
Some Studies of Complex Networks in

Multidisciplinary Fields

Thesis Submitted for the Degree of
Doctor Of Philosophy (Science)
of the University of Jadavpur

Abhijit Chakraborty
Satyendra Nath Bose National Centre for Basic Sciences

Block-JD, Sector-III, Salt Lake
Kolkata - 700098, India

July, 2014





Acknowledgements

First and foremost I want to thank my supervisor, Prof. Subhrangshu Sekhar
Manna for his support and guidance to complete my thesis. He has always been
available to advise in tough times. The joy and enthusiasm he has for research is
motivational and inspirational to me. I am very grateful for his scientific advice,
many insightful discussions and suggestions.

I am extremely thankful to Dr. Gautam Mukherjee who was a member of our
group. It has always been exciting to collaborate with him.

I would like to thank our past group members, Dr. Kunal Bhattacharya and Dr.
Anjan Nandy for their constant encouragement. Special thanks to our present group
members Biplab Bhattacherjee, Chandreyee Roy and Sumanta Kundu.

I acknowledge Dr. Punyabrata Pradhan, Dr. Sakuntala Chatterjee and all the
members of the Statistical Physics Group for fruitful discussions in journal club
meetings.

I also acknowledge the inspiration that I have got from Prof. Jayanta Kumar
Bhattacharjee .

I would also like to thank my M. Sc. Project supervisor, Prof. Sitangshu Bikas
Santra of IIT-Guwahati for his encouragement to pursue research in Statistical
Physics.

I also thank all my friends of SNBNCBS with whom I have spent a lot of time.
Specially I want to mention the names of Ambika P Jena, Devraj Roy, Prashant
Singh, Soumyajit Sarkar, Sandeep Singh, Sandeep Agarwal, Sujay Pal, Rajiv Nath,
Manotosh Chakraborty, Debmalya Mukherjee and Sudipta Kanungo.

I thankfully acknowledge the funding and facilities at SNBNCBS.
I also take this opportunity to express my gratitude to the Monks of the Ramkr-

ishna Mission Calcutta Students’ Home, Belgharia for their constant support, inspi-
ration and love throughout my academic career.

Finally, I acknowledge the unconditional support and love from my Father, Mother
and Sister.

Abhijit Chakraborty
Satyendra Nath Bose National Centre for Basic Sciences

Block-JD, Sector-III, Salt Lake, Kolkata - 700098

ii



List of Publications

1. Weighted trade network in a model of preferential bipartite trans-
actions
Abhijit Chakraborty and S. S. Manna
Phys. Rev. E 81, 016111 (2010).

2. Conservative self-organized extremal model for wealth distribution
Abhijit Chakraborty, G. Mukherjee and S. S. Manna
Fractals 20, 163 (2012).

3. Disease spreading model with partial isolation
Abhijit Chakraborty and S. S. Manna
Fractals 21, 1350015 (2013).

4. Space-filling Percolation
Abhijit Chakraborty and S. S. Manna
Phys. Rev. E 89, 032103 (2014).

5. Weighted network analysis of earthquake seismic data
Abhijit Chakraborty, G. Mukherjee and S. S. Manna
Submitted to Physica A.

iii



Synopsis of the Thesis

We often come across many networks in our daily lives, for example, the elec-
tronic communication network, surface and air transport networks etc. In addition,
international trade among different countries defines the economic trade networks,
biologists define the protein interaction network and gene regulatory network as the
examples of biological networks etc. Therefore, quite expectedly, ’Study of Complex
Networks’ has been recognized as a multidisciplinary topic.

During the last decade, extensive research efforts have been devoted towards the
study of structure, function and activities of different complex networks. Many
new information and properties of these networks have been known. Though these
networks are random in nature, yet it has become increasingly apparent that the
well-known model of Graph Theory like ’Random Graphs (RG)’ is no more appro-
priate to describe these complex networks. In particular, unlike RG, many networks
have been observed to have power law degree distributions, (degree of a nodes is
the number of links meeting at that node) and consequently few very large degree
nodes, called as ’hubs’. Such networks are called ’Scale-free Networks’ since they
lack a characteristic value for the nodal degrees in the asymptotic limit of very large
sizes. Further, it has also been realized that the efficiency of transport networks
has been hidden in their ’Small-world’ properties. In the present thesis, we report
the study of complex networks and related phenomena from the point of view of
Statistical Physics from different disciplines of science.

A. Econophysics:
i. Modeling the structure and properties of a Trade Network

The evolution of economic status of a society takes place in terms of mutual
trades among its different members, they may be individuals or corporates. To
understand the intricacies of the trade dynamics it is necessary to understand the
underlying network of mutual trades among different trading members. When a pair
of traders take part in a mutual business, a trade relationship is established between
them. We have studied a model of trade network where each individual trader or
corporate is a node of the network and when two such members take part in a mutual
business, a link is established between the corresponding nodes. Using a model of
wealth distribution, where traders are characterized by their individual quenched
random saving propensities and trade among themselves by bipartite transactions,
we mimic the enhanced rates of trading of the rich by introducing the preferential
selection rule using a pair of continuously tunable parameters. The bipartite trading
defines a growing trade network of traders linked by their mutual trade relationships.
With the preferential selection rule this network appears to be highly heterogeneous
characterized by the scale-free nodal degree and the link weight distributions and
presents signatures of nontrivial strength-degree correlations (Phys. Rev. E, 81,
016111 (2010)).

ii. Modeling the self-organized critical evolution of the wealth distri-
bution in a society

In a society, all the individual members tend to improve their economic
status. However, poorer the member more is the social pressure felt to uplift its
economic condition and consequently the poorest agent feels the strongest pressure.
Using the framework of the Pianegonda et. al. model, we have studied a conservative
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self-organized extremal model based on the above observation with a stochastic
bipartite trading rule. More precisely, in a bipartite trade one agent must be the
poorest one and the other one is selected randomly from the neighbors of the first
agent. The two agents then randomly reshuffle their entire amount of wealth without
saving. This model is one of the few examples of non-dissipative self-organized
critical systems where the entire wealth of the society is strictly conserved. We
estimate a number of critical exponents which indicate this model is likely to be in
a new universality class, different from the well established models of Self-organized
Criticality. How long a typical agent has to wait to get a chance for a mutual trade?
The time interval between two successive updates of an agent is referred as the
‘Persistence Time’ and it has been observed for the first time that in the stationary
state it follows a non-trivial power law distribution (Fractals, 21, 163 (2012)).

B. Spreading Phenomena in Networks:
iii. SIS and SIR type disease spreading models with partial isolation

on networks
Spreading of an infectious disease from an infected person to other suscep-

tible individuals depends on the existing number of people in the contact neigh-
borhood of the infected person in a population. If it is possible to maintain that
the infected individuals are completely isolated, the disease would not spread in
the society. However, in all practical cases, this kind of isolation is not perfect
but only partial. Here, we studied the effect of partial isolation in disease spread-
ing processes using the well-known models of susceptible-infected-susceptible (SIS)
and susceptible-infected-recovered (SIR) models where individuals are located at
the nodes of several graphs representing the contact networks in a society. In this
model we impose a restriction: each infected individual can probabilistically infect
only up to a maximum number n of his susceptible neighbors. Numerical study of
this model shows that the critical values of the spreading rates for endemic states
are non-zero in both models and decreases as 1/n with n, on all graphs including
scale-free graphs. In particular, the SIR model on square lattice with n=2 found to
be special case, characterized by a new bond percolation threshold (Fractals, 21,
1350015 (2013))

C. Long Range Connectivity in a System of Growing Discs:
iv. Network of growing discs in a plane leading to the Space-filling

Percolation
Nature of transition in Explosive Percolation (EP) is studied extensively in

recent years. Though wide class of EP models show very sharp change in their order
parameters for finite size systems and appear to exhibit discontinuous transition are
actually turned out to be continuous transition in the asymptotic limit of the large
system sizes. We propose and study a variant of the continuum percolation (CP)
model to exhibit a similar discontinuous-like continuous transition. A pattern of
circular discs inside a square is generated by filling a large number of growing circular
discs one by one at random position with ‘slight’ overlapping. More elaborately,
every disc grows from a nucleation centre that is selected at a random location
within the uncovered region. The growth rate δ is a fixed parameter of the model,
which is continuously tunable. When a growing disc overlaps with at least another
disc, it stops growing and is called to be ‘frozen’. Numerical simulation of the
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model shows the signature of a discontinuous-like-continuous transition similar to
Achlioptas process. Critical area coverage at the transition point approaches to
unity at δ → 0, implying the limiting pattern is space-filling. Fractal dimension of
the pore space is found to be 1.42(10) and the contact network of the discs is found
to be a scale-free network Phys. Rev. E, 89, 032103 (2014)).

D. Properties of the Earthquake Network:
v. Weighted network analysis of earthquake seismic data

We have used the method of Abe et. al. to generate a weighted earthquake
network associated with the time series of occurrences of the tremors over a long
duration and the positions of their epicenters. Here, the entire earthquake region
is digitized into a grid, where a cell represents a node if and only if at least one
tremor occurs within this cell. In addition, a bond is drawn between every pair of
successive events. In our analysis, the number of bonds between a pair of nodes is
defined as the weight of the link connecting the nodes. Weighted network is useful to
gain better insights about the structural properties and correlations present in the
network. It is observed that different properties of the weighted network are quite
different from those of their un-weighted counterparts (Submitted to Physica
A).
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Chapter 1

Introduction

1.1 Complex Network

‘Complex Network’ is a research topic of current interest that involves multidisci-
plinary fields. Researchers from diverse fields such as Physics, Mathematics, Com-
puter Science, Biology, Sociology, Economics etc., have participated in studying
different aspects of Complex Networks. Expectedly, different problems attempted
in the study of Complex Networks are widely different in nature. In the present
thesis, we have investigated the problems of Complex Network in Econophysics,
phenomenon of Percolation and Self-organized Criticality. Therefore, in this intro-
ductory chapter, we begin with a brief introduction of Complex Network, the Per-
colation phenomenon, systems displaying Self-organized Criticality and the ideas of
Econophysics.

Networks are useful to study the systems as diverse as Internet, world-wide-web,
power grid, food web, trade relationships among individuals or countries and social
acquaintances etc. In Mathematics, networks are represented by graphs. A graph
(network) is defined in terms of a pair of sets: a non-empty set V of N vertices
(nodes) and another set E of E edges (links). Each element of the set E corre-
sponds to a pair of nodes of the set V. Many complex systems can be mapped as
networks by this simple definition of network, which does not incorporate additional
detailed features of the systems. Networks are mathematically represented using
the points (nodes) and the lines (links) between them. For example, in the most de-
tailed description of the Internet, computers represent the nodes and the connection
between the computers are represented by the links; in a Food Web, various species
form the nodes and the links are established by the predator-prey relationship; in
the trade network of the individuals, traders are the nodes and business transactions
among the traders are represented by the links.

An extremely interesting Mathematical Problem of seven bridges of Königsberg
is regarded as the one of the early problems tackled in terms of the Graph Theory.
The problem is to find a walk through the city that would cross each bridge only
once, with the additional requirement that the trip ends in the same place it began
(Fig. 1.1). In 1736, Leonhard Euler showed that such paths are impossible [1].
Originating from Mathematics, Graph Theory and its application spreads in the field
of Sociology [2] in the mid-twentieth century. At the same time, mathematicians also
did a vast work in the field of graph theory [3]. At the early stage, scientists were
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2 CHAPTER 1. INTRODUCTION

mostly interested in pure mathematical part of the Graph Theory and the graph
properties of the network of a small number of nodes. In recent age, the availability of
modern computation facilities advanced this field; scientists have become interested
in studying vast networks of millions of nodes. Modeling of real-world network,
studying structural and dynamical properties of network and dynamical processes
on network are the current trends in the complex network field.

However, the breakthrough in attention to the study of networks came after
the publication of two seminal papers, one by Watts and Strogatz [4] introducing
“Small-world Networks” and the other one by Barabási and Albert [5] introducing
“Scale-free Networks”.

1.2 Different Types of Networks

Considering additional details of the links, a network can be termed as directed
network, undirected network and weighted network. In a directed network, a specific
direction is associated with each link. The food web is an example of a directed
network, where a directed link is present from prey to predator. On the other hand,
an undirected network is the one in which links have no direction. In other words,
here all links are bi-directional. For example, a road network is undirected, where
links are represented by streets and nodes are represented by crossings; airport
network is also undirected, where airports are the nodes and they are connected
if there is a direct flight between a pair of airports. In many real-world networks,
it is often seen that different links participate in network activities with different
strengths. Such networks are represented by a weighted network. For example, in
the airport network, passenger traffic of the direct flights between the airports, varies
widely from one link to the other. Schematic diagram of the undirected, directed
and weighted network is shown in Fig. 1.2.

1.3 Quantities Associated with Networks

Following is the discussion of some quantities that are associated with the description
of networks.

1.3.1 Adjacency Matrix

An adjacency matrix is defined to represent the structure of a network. Different
elements of the adjacency matrix are either 1 or 0, depending on if the connection
exists between the nodes or not. More elaborately, a network of N nodes is presented
by a N x N adjacency matrix A. The elements of the matrix are aij; aij=1, if there
exists a link between i-th and j-th node and aij= 0, otherwise. For a network with
no self-loops, the diagonal elements of the adjacency matrix must be zero. For an
undirected network, the adjacency matrix is symmetric. In a directed network aij =
1, if the link is directed from i to j, otherwise aij = 0. For example, the adjacency
matrices A1 and A2 for the network shown in Fig. 1.2(a) and 1.2(b) can be written
as follows:
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Figure 1.1: Königsberg bridge problem. Figure taken from:
http://en.wikipedia.org/wiki/Seven Bridges of Königsberg

A1 =

















0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 1 1 1
0 1 1 0 0 0
0 0 1 0 0 1
0 0 1 0 1 0

















and A2 =

















0 1 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0

















1.3.2 Nodal Degree

The ‘degree’ ki of a node i is defined as the number of links meeting at the node.
This can be written in terms of the elements of the adjacency matrix:

ki =
N
∑

j=1

aij. (1.1)

The mean degree of the network is evaluated from the expression

〈k〉 = 1

N

N
∑

i=1

ki =
1

N

N
∑

i,j=1

aij. (1.2)

In comparison, two different nodal degree values are defined for the directed net-
works. The number of links kini pointing towards the node i is called the in-degree,
where as the number kouti of links pointing outwards from the same node is called its
out-degree. Total degree k is therefore k = kini + kouti . For example, in Fig. 1.2(b)
node 3 has kini = 2 and kouti = 1.
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Figure 1.2: The depiction of (a) an undirected, (b) a directed and (c) a weighted
network with N = 6 nodes and L = 6 links. The direction of the links is represented
by arrowhead in (b). The thicknesses of the links represent the values of the weights
associated with the links in (c).

1.3.3 Probability Distribution of Nodal Degrees

The nodal degree distribution is a very important and widely used quantity of the
network structures. It is the basic tool for topological characterization of networks.
The degree distribution P(k) is defined as the probability that an arbitrarily selected
node has degree k. In other words, this is the fraction of nodes in the network that
have degree k. The n-th moment of P(k) is defined as

〈kn〉 =
∑

k

knP(k). (1.3)

The first moment 〈k〉 is the mean degree of the network and second moment 〈k2〉
measures the fluctuation in the degree distribution. In general, networks are char-
acterized by the functional form of their degree distributions. In Random Graphs,
links are placed with uniform probabilities. It is known that Random Graphs have
Poissonian degree distribution. On the other hand, scale-free networks are charac-
terized by degree distributions having power law decaying tails.

1.3.4 The Clustering Coefficient

The clustering coefficient is a measure of the three point correlation among the local
neighboring nodes A, B and C. It measures the probability that A is connected to
C, when A is linked to B and B is linked to C. Quantitatively, if Ei is the number
of links among the ki neighbors of i then the clustering co-efficient Ci of the i-th
node is

Ci =
2Ei

ki(ki − 1)
=

N
∑

j,m=1

aijaimajm

ki(ki − 1)
. (1.4)

Therefore, the average clustering coefficient of the entire network is:

C = 1

N

N
∑

i=1

Ci (1.5)
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According to the definition, 0 ≤ Ci ≤ 1 and 0 ≤ C ≤ 1. The minimum value of the
average clustering coefficient of a network C = 0 implies the absence of any triangle
among any three nodes of the network. As an example, one can cite a loop-less tree
graph. The maximum value of the average clustering coefficient of a network C = 1
indicates all nodes of the network connected to one another and such a graph is
called a ‘complete graph’ or an N -clique. In a more detailed analysis, the clustering
co-efficient C(k) averaged over the subset of nodes of degree k is measured. For
many real-world networks C(k) decreases with increasing k as C(k) ∼ k−βk with
βk ≈ 1. This implies that the neighbors of the large degree nodes are relatively less
connected among themselves compared to the neighbors of the small degree nodes.

1.3.5 Degree Correlations and Assortativity

Correlation among nodes of different nodal degrees is measured in terms of condi-
tional probability P(k1|k). The conditional probability P(k1|k) is the probability
that a node of degree k is connected to a node with degree k1. For correlated net-
works P(k1|k) depends on k and for uncorrelated networks it is independent of k.
Most of the real-world networks exhibit such degree correlations, but due to the
finite size of the networks the correlation becomes extremely noisy and therefore
difficult to estimate.

In an alternative way to measure degree correlation, one defines the average degree
of the nearest neighbors of a node i as

knn,i =
1

ki

∑

j∈ki

kj =
1

ki

N
∑

j=1

aijkj, (1.6)

where the first sum runs over all the neighboring nodes ki of node i. Similarly,
knn(k) is defined as the average degree of the neighbors of nodes of degree k. There-
fore, knn(k) can be expressed in terms of conditional probability by the following
expression

knn(k) =
∑

k1

k1P (k1|k). (1.7)

For uncorrelated networks knn(k) is independent of k. Correlated networks are called
‘assortative’ or ‘disassortative’ depending on knn(k) increases or decreases with k re-
spectively. In other words, the network is said to be assortative, if high degree nodes
are preferentially connected with high degree nodes of the network. Similarly, the
network is called disassortative if the high degree nodes are preferentially connected
with the low degree nodes of the network.

1.3.6 Scale-free Networks

It has been observed that many real-world networks are highly heterogeneous in
their structural connectivities. Few most common examples are the Internet [6], Air-
traffic networks [7], Protein-protein interaction networks in Biology [8] etc. These
networks have the following common characteristics: a large number of nodes have
very small degrees, comparatively less frequently observed are the higher degree
nodes and there are few nodes whose degrees are very high, called the hubs of the
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network. It has also been observed that the probability distribution of their nodal
degrees have power law tails. It is assumed that in the asymptotic limit of very large
sizes, the degree distribution P(k) has the form

P(k) ∝ k−γ, (1.8)

where the constant γ is regarded as a critical exponent whose values are compared
for different networks to determine the different universality classes.

For finite size N of the network, however, there exists an upper cut-off kmax in the
degree distribution which is determined by the network size as kmax ∼ N ζ . There-
fore, the degree distribution data P(k,N) for different network sizes can suitably be
scaled to obtain a good collapse of the data. This finite-size scaling has the following
form:

P(k,N) ∝ N−η{k/N ζ}. (1.9)

One of the most well known scale-free network is known as the Barabási-Albert
(BA) network [5]. This is a model of a growing network. Starting from a small cluster
of few nodes, the network is grown by adding new nodes one by one. In addition,
every new node is connected to the growing network by m distinct links. Each
of these links selects one distinct node of the growing network using a preferential
attachment rule. For BA network it is required that the probability of attachment
is linearly proportional to the degree of the node π(k) ∝ k. It has been shown that
the exact values of the exponents γ = 3, η = 3/2 and ζ = 1/2.

1.3.7 Shortest Paths and Diameter

The ‘shortest path’ between the nodes i and j is defined as the minimum number
of edges required to cross for going to the j-th node, starting from the i-th node. In
general, there can be multiple paths between an arbitrary pair of nodes. All possible
shortest paths on a network are represented by a matrixDp whose elements dij is the
measure of the shortest path between the i-th and the j-th node. For a connected
network, the average shortest path is given by

〈d(N)〉 = 1

N(N − 1)

N
∑

i,j=1

dij (1.10)

If for a network 〈d(N)〉 ∝ ln(N), then the network is called Small-world Network.
Many real world networks, for example biological, technological and social networks
[4, 9], such as neural network, electric power grids network, world-wide web [10],
railway network [11], co-authorship network [9, 12] and network of movie actors [4]
show the small-world property. Diameter D(N) of a network is defined as the largest
shortest path between any two nodes of the network. The logarithmic variation of
the diameter 〈D(N)〉 ∝ ln(N) is also considered as the signature of the small-world
property. The notion of path length plays an important role for transportation on
networks.
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1.3.8 Weighted Networks

In a real-world network, different links appear with different strengths. In fact, the
link strengths are not at all uniform, actually often they vary over wide ranges. For
example, the passenger traffic between a pair of airports in airport network [13],
strength of the pair-interaction between two species in ecological network [14], the
volume of trade between two countries in the international trade network [15,16] and
the data traffic in a link of the Internet [17] etc. For these networks, a new variable
called ‘weight’ is associated with every link of the network which represents the
strengths of the links. Such networks are known as weighted networks. A weighted
network is represented by a weight matrix W, in analogy to the adjacency matrix of
unweighted network. Element wij of the weight matrix W represents the weight of
the link between the nodes i and j. A number of new properties of these networks
have come to light when they are analyzed considering the link weights.

1.3.9 Nodal Strength

Strength of a node is the weighted counterpart of degree, measured by the total
amount of weight supported by the node:

si =
N
∑

j=1

wij. (1.11)

When the weights are independent from the topology, we obtain the strength of the
nodes of degree k is s(k) ≃ 〈w〉k where 〈w〉 is the average link weight. However, in
presence of correlation one gets s(k) ≃ Akβ with β 6= 1 in general.

1.3.10 Weighted Clustering Coefficient

The weighted clustering coefficient of the i-th node of a network is defined as [13]

Cwi =
1

si(ki − 1)

N
∑

j,m=1

(wij + wim)

2
aijaimajm. (1.12)

Since, si = ki(si/ki) = ki〈wi〉 where 〈wi〉 = (si/ki) =
N
∑

j=1

wij/ki average weight of

links associated with node i. Cwi can also be written in the form [18]

Cwi =
1

ki(ki − 1)

N
∑

j,m=1

(wij + wim)

2 < wi >
aijaimajm (1.13)

Cwi shows the amount of strength of the i-th node is associated with the edges of the
adjacent triangle. From the definition 0 ≤ Cwi ≤ 1. In the limiting case, when wij

is either 1 or 0, Cwi will be the same as unweighted clustering coefficient Ci. The Cw
and Cw(k) are the weighted clustering coefficient averaged over all the nodes of the
network and the subset of nodes having degree k, respectively. Weighted clustering
coefficient reflects the correlation between topology and weights.
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1.3.11 Weighted Average Nearest-neighbors Degree

The weighted average nearest-neighbors degree of the i-th node of a network is
defined as [13]

kwnn,i =
1

si

N
∑

j=1

wijkj. (1.14)

One can define kwnn(k) which is the average kwnn,i over the nodes with degree k. It
measures the weighted assortative or disassortative properties of the network.

1.3.12 Disparity

We have already mentioned that typically the link weights in a weighted network are
highly heterogeneous and they vary over a wide range. The degree of heterogeneity
is measured by a quantity, called the ‘disparity’. For example, the disparity Yi of
the i-th node is evaluated by the following expression [19,20]

Yi =
N
∑

j=1

[wij/si]
2. (1.15)

Similarly, Y (k) is the average disparity of the nodes of degree k. If all the links have
the weight of same order, then Y (k) ∼ 1/k whereas, if one link weight dominates
over all other link weights, then Y (k) ≃ 1 [21].

1.3.13 Reciprocity

It has been observed that for a real-world directed network, some links are uni-
directional and other links are bi-directional. A complete uni-directional network is
the ‘citation network’ where a paper cites papers which are already published, the
opposite cannot be true. A complete bi-directional network is actually undirected
network. For example, the Internet is a bi-directional network where data is trans-
ferred in both directions along the links. Finally, the example of partially directed
network, having both uni- and bi-directional links, is the World Trade Network.
Here, a country i may export to another country j, but the opposite may or may
not be true. The bi-directionality of a network is measured by defining a quan-
tity called ‘reciprocity’ r [22]. The reciprocity of an unweighted directed network

is defined as the ratio between the number of bi-directional links
←→
L and the total

number of links L in the network.

r =

←→
L

L
. (1.16)

Therefore, r = 0 represents a completely uni-directional network and r = 1 repre-
sents a completely bi-directional network. Most of the real-world networks have an
intermediate value of r.
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(a) (b) (c)

Figure 1.3: Site percolation on the square lattice of size of size 24 × 24. The site
occupation probability p has been 0.4 in (a), 0.6 in (b) and 0.8 in (c). The spanning
cluster exists only in (c).

1.3.14 Components

In general, a network may consist of multiple components. A connected component
of a network is a sub-network where any two nodes of the sub-network have a path
between them. The size of a connected component is measured by the number of
nodes in the component. ‘Giant component’ of a network is the largest component
in the network. If there exists a path between any two nodes of the network, the
network is called a fully connected network.

1.4 Percolation

The concept of percolation phenomenon was introduced by Broadbent and Ham-
mersley in 1957 [23]. On a regular lattice the edges or bonds are considered to be
open with probability p (0 ≥ p ≤ 1) and closed with probability (1 − p). This
process is called the ‘bond percolation’. On the other way, if sites instead of bonds
are considered to be occupied with probability p and empty otherwise, it is called
site percolation. An occupied site / bond takes part in the flow of fluid or particles,
but the unoccupied sites cannot. In percolation the stochastic nature of the medium
affects the flow of the fluid that distinguishes it from the conventional diffusion pro-
cess where the particle or fluid shows the stochastic behavior. Though the problem
of percolation is simple to state, still a rigorous mathematics is involved with its
solution. Percolation models are useful in explaining various phenomena, such as
transport process in disorder media, disease spreading process in a population and
electrical conduction problem etc.

The main interest in the percolation problem is the associated critical phenomena.
Let us consider a square lattice whose sites are occupied randomly with probability p
and are left vacant with probability (1−p). As p is increased, at a specific value of pc,
called the percolation threshold, a global connectivity appears across the system. In
other words, at pc there will appear an infinite cluster of occupied sites in an infinite
system for the first time (Fig. 1.3). A cluster is defined as a group of occupied sites
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connected by the nearest neighbor distances. There is always an infinite cluster
extending from one side of the system to another side of the system for p ≥ pc and
there is no infinite cluster for p < pc. Therefore, across the percolation threshold pc,
the system changes from a locally connected phase to a globally connected phase. It
is known that this phase transition is continuous and the size of the largest cluster
is the order parameter for this problem. For square lattice, pc = 0.592746 (site) and
1/2 (bond) [24].

The problem of percolation has also been studied in continuous space, and it is
referred as the continuum percolation (CP). There one finds the minimal density
of Lilies, floating at random positions on the water surface of a pond, such that an
ant will be able to cross the pond walking on the overlapping Lilies when the radii
of the Lilies have a fixed value R [25]. This phenomenon can also be described as
how the global connectivity is achieved in a Mobile ad hoc network where each node
represents a mobile phone, located at a random position, with a range of transmission
R [26]. Depending on R there exists a critical density of Lilies or phones where the
long range correlation sets in. It is well-known that in both versions of the CP the
transition is continuous and they belong to the same universality class of ordinary
lattice percolation [27].

Apart from the studies of percolation on regular lattices, the phenomena of Per-
colation have been studied on networks as well [28-30]. The most important example
is the Random Graph by Erdős and Rényi [3] where the phenomenon of percolation
had been studied on the complete graphs. The Order Parameter, which is the size
of the largest component, has a very small value of the order of logN when p < pc.
On the other hand, the giant component grows as N for p > pc. Around the critical
point, variations of different observables assume power law forms, as follows:
Order parameter near pc varies as:

P (p) ∼ |p− pc|β (1.17)

Correlation length ξ(p) diverges as p→ pc:

ξ ∼ |p− pc|−ν (1.18)

For infinite size systems, the cluster size distribution ns at pc has the form:

ns ∼ s−τ (1.19)

At the sub-critical regime, only clusters of finite size exist with maximal size smax.
smax diverges as p→ pc:

smax ∼ |p− pc|−1/σ (1.20)

The average size of the cluster 〈s(p)〉 diverges at p→ pc:

〈s(p)〉 ∼ |p− pc|−γ (1.21)

Following scaling relations exist among the exponents:

β =
(τ − 2)

σ
(1.22)
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2d 3d
β 5/36 0.41
ν 4/3 0.875(1) [31]
τ 187/91 2.189(2) [31]
σ 36/91 0.445(10) [31]
γ 43/18

Table 1.1: The values of the critical exponents in percolation model

γ =
(3− τ)
σ

(1.23)

ν =
(τ − 1)

σd
(1.24)

The precise values of the critical exponents do not depend on the type of per-
colation, i.e., if it is site / bond percolation, or on the detailed structure of the
lattice. These exponents only depend on the dimensionality d. For example, both
site percolation and bond percolation on square or triangular lattices have the same
critical exponents as the continuum percolation in two dimensions and they are said
to belong to the same ‘universality class’. The values of the critical exponents of
standard percolation models are shown in Table 1.1.

1.5 Bak-Sneppen Model of Self-organized Criti-

cality

An equilibrium system shows complex behavior characterized by power law at the
critical point at the time of phase transition [32]. The system goes to an ordered
state from a disordered state when the temperature is tuned. The system shows
fluctuation of all length scales right at the critical point. Temperature is tuned
properly to reach the critical point. But no one is present in nature to tune the
temperature so that the system reaches a critical point and shows complex behavior.

In 1972, paleontologists Stephen Jay Gould and Niles Eldredge said that the ap-
parent equilibrium is only a long period of quiescence between intermittent bursts
of activity in which many species become extinct and new species emerge [33]. This
phenomenon is called Punctuated equilibrium. The idea of punctuated equilibrium
becomes the main mechanism of the dynamics of the complex system. Large inter-
mittent bursts are impossible in an equilibrium system, but are present in biology,
economics and history.

We know that complex behavior such as catastrophic events, fractal, 1/f noise,
and Zipf’s law ubiquitous in nature. Such phenomena can not be explained by
equilibrium picture. In 1987, Per Bak, Chao Tang and Kurt Wiesenfeld adopted a
non-equilibrium picture with the principle of Self-organized Criticality (SOC) [34].
The dynamics of the self-organized critical systems itself evolve to critical state
without any fine tuning parameter from the outside. Fluctuations of such systems
are measured in terms of avalanches. Avalanches of all length scales exist at the
critical point. Sandpile is the canonical example of self-organized criticality.
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Figure 1.4: Time evolution of the fitness fi at different sites of an 1d lattice of size
N = 512. The series of snapshots are taken at time t = (a) 0, (b) 500, (c) 1000,
(d) 500,000, (e) 5,000,000, (f) 15,000,000. The position of the threshold value of the
fitness fc = 0.66702 is shown by the red line. With time the fitness values gradually
move up beyond fc and stay there in the stationary state during further evolution.

Later in 1993, Bak and Sneppen introduced the SOC model for ecological evolu-
tion [35]. Using the idea of Darwinian principles [36] that the less fit species always
gets mutated, they presented a stochastic extremal model of interacting species,
which shows punctuated equilibrium behavior. They considered a one dimensional
lattice as a food chain of L-species with a periodic boundary condition. Each lattice
site represents a species. Each species is characterized by a single fitness variable fi.
Initially fitness values of the species are assigned from a distribution of uniformly
distributed random numbers between 0 and 1. At an arbitrary time the system
evolves according to following two steps: (i) A search is made to find the “active”
site io which has the minimal fitness fmin. This “active” site io is get mutated .i.e.
its fitness value is replaced by a new random number. (ii) Two nearest neighbors
(io + 1) and (io − 1) of the “active” site io are mutated as well. Initially the system
is uncorrelated in space, but as time passes the system becomes more and more
correlated in space. In the stationary state the fitness distribution P (f) assumes a
time independent step like form: P (f) = 0, for f < fc and P (f) = Constant, for
f > fc.

Initially fmin value is very small. The probability that fmin will be replaced
by an even smaller fitness after evolution is also small. However, this probability
gradually increases as fmin increases. As the sites with the minimal values of fitness
are systematically replaced, very soon all sites with small f values are replaced
by larger values of f resulting a vacancy in the small f region. This is explained
pictorially in Fig. 1.4. We plot the lattice positions i along the abscissa and the
corresponding fitness fi along the ordinate on an 1d lattice with N = 512. As
time increases a vacant region gradually forms for small values of f for all sites.
Except for a localized zone where the avalanche occurs, the values of fi are above
the threshold value of the fitness fc = 0.66702 in 1d in the stationary state. To
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define an avalanche quantitatively, one has to take a reference fitness f = fo. In
the stationary state the fitness fmin of the active site io appears below and above
fo. A fo-avalanche is defined as the sequence of successive evolution whose fmin

values are smaller than fo. The size s of the avalanche measures the duration of the
avalanche, i.e., at times t and (t+ s+ 1) the fmin > fo, whereas at every time step
from (t+1) to (t+ s) the fmin < fo. When fo is set equal to fc it is called a critical
avalanche. At the critical point the avalanche distribution has a power law behavior
in limit of N →∞: P (s) ∼ s−τ . For a finite system size L, P (s, L) has a power law
behavior up to a cut-off smax(L). P (s, L) decreases very fast beyond smax(L). The
dependence of smax(L) on L has the following power law behavior:

smax(L) ∼ Lν (1.25)

The avalanche size distribution P (s, L) obeys the standard finite size scaling ansatz:

P (s, L) ∝ s−τF(sL−ν) (1.26)

where the scaling function F(x) ∼ constant in the limit of x → 0 and F(x) ap-
proaches zero rapidly for x >> 1.

1.6 Econophysics of Wealth Distribution

One of the most important results in this field of Economics and Social Sciences was
suggested by Vilfredo Pareto in 1897 [37]. Pareto analyzed the wealth distribution of
the individual members in a society. From his empirical study in different countries,
Pareto argued that the individual member’s wealth distribution assumes a power
law decay form

P (x) ∼ x−(ν+1), (1.27)

where, P (x)dx is the probability that a randomly selected individual has wealth
between x and x + dx. From the empirical observations it has been found that
the exponent ν ≃ 1.5. However, Pareto suggested that for wealth distribution the
exponent ν = 1. Such a distribution is known as the Pareto distribution and the
exponent ν is called Pareto exponent. Pareto exponent has been observed to be
different for different countries. Some of these values have been listed in Table
1.2 [38]. However, recent studies have revealed that Pareto law is more applicable
for the tail end of the wealth distribution of the rich people. The part of the wealth
distribution corresponding to the low income group people are more appropriately
described by an exponential [39, 40] or a Gaussian distribution [41] (Fig. 1.5).

Application of the concepts of Statistical Physics to the individual wealth or in-
come distribution in a society goes back to 1931 when Saha and Srivastava had
suggested that the form of the wealth distribution may be similar to the Maxwell-
Boltzmann distribution of molecular speeds in an ideal gas [42,43]. Similar interest
along this line had been devoted when Majorana drew the analogy between Statisti-
cal Physics and the Social Sciences in 1936 [44]. Further, a large number of Physicists
became highly active in this field in the latter part of the twentieth century, e.g.,
Stanley [45], Kadanoff [46], Montroll [47] etc. The term Econophysics was coined by
H. E. Stanley in a Statistical Physics conference in Calcutta in 1995 [48]. Recently
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Country Year ν
England 1843 1.50

1879-80 1.35
1893-94 1.50

Prussia 1852 1.89
1876 1.72
1881 1.73
1886 1.68
1890 1.60
1894 1.60

Saxony 1880 1.58
1886 1.51

Augsburg 1471 1.43
1498 1.47
1512 1.26
1526 1.13

Table 1.2: Values of the Pareto exponent of different countries over a period of
time [38].

Statistical Physics models such as Kinetic Exchange Models (KEM) [49, 50], Per-
colation models [51], Self-organized Critial models [52] etc. are applied extensively
to simulate the wealth distribution of the individual. In a model of Econophysics
a large number of individuals, also called agents, interact with one another. These
types of models are known as Agent Based models.

1.7 Kinetic Exchange Models of Wealth Distribu-

tion

In this model, the society is considered as a collection of N agents, each possesses
a certain amount of money equivalent to his wealth xi, {i = 1, N} which he uses
for mutual trades with other agents. Typically at the initial stage, all agents start
with an equal amount of money P (xi, t = 0) = δ(xi − a). The sequential time t
is the number of bipartite trades. A trade consists of two parts, (i) a rule for the
selection of a distinct pair of agents i and j, (i 6= j) and (ii) a distribution rule for
sharing their total money (xi + xj) between them. Different KEMs differ from one
another either in the selection rule, or in the distribution rule, or in both. Let, for
the (t + 1)-th mutual trade, a pair of distinct agents i and j be selected. Every
bipartite trade is conservative and therefore, if the i-th agent gains ∆x amount of
wealth then the j-th agent loses the same amount. The wealth of the agents i and
j at time (t+ 1) can be written as

xi(t+ 1) = xi(t) + ∆x

xj(t+ 1) = xj(t)−∆x (1.28)

By the rule of wealth conservation xi(t + 1) + xj(t + 1) = xi(t) + xj(t) for all
t. Consequently, the net wealth of the society remains conserved throughout its
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Figure 1.5: Cumulative probability distribution of total wealth in the UK shown
on log-log scale. Points: the actual data from the Inland Revenue, solid lines:
exponential fit (Boltzmann-Gibbs) and power(Pareto) law fit of the data. Same for
the low wealth regime is shown in log-linear scale in the inset. Courtesy: Drăgulescu
and Yakovenko [39].

dynamical evolution.

1.7.1 Drăgulescu and Yakovenko (DY) Model

In this model, at time t + 1, a pair of agents i and j is selected randomly from the
set of N agents and their total money xi(t) + xj(t) is redistributed between them
according to following expression:

xi(t+ 1) = ǫ(t)(xi(t) + xj(t))

xj(t+ 1) = ǭ(t)(xi(t) + xj(t)). (1.29)

Here, ǫ(t) is a freshly generated random number with uniform distribution within
the range [0 : 1] and ǭ = 1 − ǫ. Starting from a uniform distribution of wealth,
the system relaxes to a stationary state, where the wealth distribution assumes a
time independent exponentially decaying form. Therefore, in the stationary state
the wealth distribution can be written as:

P (x) = 1/〈x〉 exp(−x/〈x〉), (1.30)

where, without the loss of generality the mean wealth is set at 〈x〉 = 1 [53]. Simu-
lation of the wealth distribution in DY model is shown in Fig. 1.6 for N = 256. A
nice straight line fit in log-linear scale of the plot justifies the exponential decay of
the wealth distribution. The exponential nature of the distribution arises from the
fact that the net wealth is conserved and time-reversal symmetry is maintained in
the dynamics of the model.
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Figure 1.6: Probability density of wealth distribution for DY model has been shown
for N = 256.

1.7.2 Chakraborti and Chakrabarti (CC) Model

It is a natural tendency of an individual is to save money. Chakraborti and Chakrabarti
have incorporated this saving mechanism and therefore modified the DY model. In
this model, a parameter λ (0 ≥ λ ≤ 1) is introduced as the saving propensity, whose
value has been maintained to be the same for all bipartite transactions [54]. The
model evolves according to the following equation:

xi(t+ 1) = λxi(t) + ǫ(t)λ̄(xi(t) + xj(t))

xj(t+ 1) = λxj(t) + ǭ(t)λ̄(xi(t) + xj(t)), (1.31)

where, λ̄ = 1 − λ. It has been observed that in the stationary state the wealth
distribution becomes a single peaked asymmetric function, which fits excellent with
a Gamma distribution of the form [55]:

Pn(x) =
1

Γ(n)
(n/〈x〉)nxn−1 exp(−nx/〈x〉) (1.32)

where n = 1+3λ/(1−λ). The distribution has a peak at x = 1−1/n = 3λ/(1+2λ).
Probability density of wealth distribution in CC model is shown in Fig. 1.7 for
N = 8192 and λ = 1/2.
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Figure 1.7: (Color online) Probability density of wealth distribution for CC model
has been shown for N = 8192 and λ = 1/2. Simulated data have been plotted in
black and the Gamma distribution has been fitted in red color.
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Chapter 2

Weighted Trade Network in a
Model of Preferential Bipartite
Transactions

2.1 Introduction

In the last chapter we have seen that the economic status of the members of a society
evolves in terms of mutual bipartite trades among different pairs of agents. This is
the basic idea of Agent Based Models. It is also well known that the inequality in
the economic strengths of the members in the society is an inherent phenomenon.
Inequality arises through the economic interactions among the members.

It is also apparent that not all the agents take part in the trading process equally.
The rich members of the society take part in the trade more frequently than the poor
members. This suggests that there exists an underlying network and the economic
evolution of the society takes place on this network. Therefore, to study the wealth
distribution of the society, it is important to look into the detailed network structure
of the trade dynamics.

In the trade network individual agents are the nodes. A connection or link is
formed between a pair of agents when they take part in at least one transaction
between them. Here we study the the growth and the structural properties of a trade
network in the framework of a well-known model of wealth distribution, namely, the
kinetic exchange model (KEM) with quenched random saving propensities [49, 50].
A similar study of the network structure of the International Trade has already been
done [15,56]. In this network, different countries represent the nodes of the network,
and a link between two nodes exists only when there is a non-zero volume of trade
between them.

The trade network to be defined and studied in this chapter has its ingredients in
the following KEM model. We first describe this model and then define our model.

19
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2.2 Wealth Distribution Model with Quenched Sav-

ing Propensities

In this model Chatterjee, Chakrabarti and Manna (CCM) assigned a distribution
of quenched saving propensities {λi, i = 1, N} for the individual agents [57]. This
implies that in a typical bipartite trade between the agents i and j, they save
fractions λi and λj of their money and invest the remaining amounts to the mutual
trade.

xi(t+ 1) = λixi(t) + ǫ(t)(λ̄ixi(t) + λ̄jxj(t))

xj(t+ 1) = λjxj(t) + ǭ(t)(λ̄ixi(t) + λ̄jxj(t)) (2.1)

where, λ̄i = 1− λi. The wealth distribution in the stationary state, after averaging
over many different realizations of the quenched disorder {λi}, exhibits a power
law decay with a value of the Pareto exponent ν ≈ 1 [57]. Subsequent detailed
analyses have revealed that the CCM model has many interesting features [58].
For example, in contrast to the DY and CC models, CCM model is not ergodic.
Therefore, the wealth distribution is not self-averaging and the single trader wealth
distribution is totally different from the overall wealth distribution of the whole
society. Consequently, the individual saving propensity factor λi plays the role of
an identification label that determines the economic strength of a member in the
society [58]. In fact, the wealth of a trader fluctuates around a mean value which
depends very sensitively on the precise value of λi. Larger the value of λ higher is
the mean wealth. Truly the wealth distribution averaged over many uncorrelated
quenched {λi} sets is the convolution of the individual members’ wealth distributions
[58]. This overall distribution for the whole system exhibits Pareto law but not the
individual member distributions. The exponent ν = 1 has been found to be exactly
equal to unity in [59, 60].

2.3 Our Model

Quite generally, rich agents in the society take part in the mutual trade with other
agents more frequently than poor agents. In contrast, in the CCM model all traders
are selected with equal probabilities. Here, we modify the CCM model by incor-
porating a mechanism of selecting rich traders with higher probabilities [61]. This
enhanced probability has been introduced by a pair of parameters α and β (α, β ≥ 0).
A pair of traders i and j, (i 6= j) with money xi and xj are selected with probabilities

πi(t) ∝ xi(t)
α and πj(t) ∝ xj(t)

β. (2.2)

Clearly, α and β tune the preference of the traders in selection. For α = β = 0
the model is same as the CCM model. For any non-zero values of α and β the
rich traders are selected with larger probabilities. More rich a trader, higher is the
probability that it will be selected for trading. After the selection of a pair of traders
i and j, now they save λi and λj fractions of their money and invest the rest amounts
to the mutual trade. The total invested amount by both the traders is therefore

δij(t) = λ̄ixi(t) + λ̄jxj(t), (2.3)
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where λ̄ = 1−λ. This amount is then randomly divided into two parts and received
by them randomly:

xi(t+ 1) = λixi(t) + ǫ(t)δij(t)

xj(t+ 1) = λjxj(t) + ǭ(t)δij(t). (2.4)

where ǫ(t) is a freshly generated random fraction and ǭ = 1− ǫ.
At first we estimate the relaxation time required for the system to reach the sta-

tionary state. When (α, β) > 0, according to equation (2.7) richest and next rich are
the most probable pair and poorest and the next poor are the least probable pair for
selection. Relaxation time, which is the typical time required for the poorest pair
to make a trade, can be estimated by considering the maximum wealth xmax ∼ N
(with 〈x〉=1) and the minimal wealth xmin ∼ 1/N . The probability that the poorest
trader will be selected for a trade is xαmin/Σix

α
i . Approximating the denominator

by its maximum value we get (xmin/xmax)
α ∼ N−2α. Similarly, the selection prob-

ability for the next poorest trader is N−2β and for the poorest pair is N−2(α+β).
Therefore the time required for a trade between the poorest pair T2 ∼ N2(α+β) and
the relaxation time is several multiples of T2. Thus for any (α, β) > 0 the relaxation
time grows very rapidly with N .

At the early stage rich traders at the top level quickly take part in the trading
but gradually the inclusion of relatively poor traders becomes increasingly slower.
As a result the number of distinct traders taking part in the trading process grows
very slowly. Effectively this implies that the system passes through a very slow
transient phase which is practically time independent. We call this state as the
“quasi-stationary state (QSS)”. It is to be noted that in the following sections we
present our numerical results for large system sizes in the QSS only. To ensure
that the system has indeed reached the QSS in our simulations we keep track of
the quantity Σix

2
i and collect the data only after no appreciable change of its mean

value is noticed. We mostly analyze the symmetric α = β cases except for a few
asymmetric cases.

2.4 Wealth Distribution

The average money of a trader 〈x(λ)〉 with saving propensity λ diverges as λ → 1
in CCM model [58]. It was also observed that the divergence is like 〈xi〉(1 − λi) =
constant [59, 62]. The reasons behind it is that there is a trader with λ = 1, who
will not invest any money in a trade but it will always get a share from the trading
amount, which is invested by other traders. Therefore, the trader with λ = 1
finally will grab all the money from the society and this phenomena is similar to the
condensation.

In Fig. 2.1(a) we plot the quantity 〈x(λ)〉(1 − λ) vs. λ for five different values
of α = β = 0, 1/2, 1, 3/2 and 2. For α = β = 0 we see the horizontal line as
observed in [62]. However for other α, β values the variations of the same quantity
are far from being uniform and are monotonically increasing with λ, their growth
becoming increasingly faster with α. Therefore we try multiplying this function
by λ−χ(α) where χ(α) is a function of the parameter α. In Fig. 2.1(b) we plot
〈x(λ)〉(1 − λ)λ−χ(α) vs. λ using the same data of Fig. 2.1(a) using χ(α) = 0.15,



22 CHAPTER 2. WEIGHTED TRADE NETWORK IN A MODEL OF ...

0.0 0.2 0.4 0.6 0.8 1.0λ
0.00

0.05

0.10

0.15

<
x(

λ)
>(

1−
λ)

0.0 0.2 0.4 0.6 0.8 1.0λ

0.0

0.1

0.2

0.3

0.4

<
x(

λ)
>(

1−
λ)

λ−χ
(α

)

(a) (b)

Figure 2.1: (Color online) (a) Plots of 〈x(λ)〉(1−λ) vs. λ for α = β = 0 (black), 1/2
(red), 1 (green), 3/2 (blue) and 2 (magenta) for N = 1204 (α increases from top to
bottom). (b) The product function 〈x(λ)〉(1−λ)λ−χ(α) is plotted with λ using χ(α)
= 0.15, 0.35, 0.57 and 0.80 for α = 1/2, 1, 3/2 and 2 respectively using the same
colors as in (a).

0.35, 0.57 and 0.80 for α = β = 1/2, 1, 3/2 and 2 respectively. We get nearly
uniform variations between λ = 0.3 and 1. We assume that

〈x(λ)〉(1− λ)λ−χ(α) = constant. (2.5)

If the distribution of λ values is denoted by g(λ) = constant, and since the wealth
x and the saving propensity λ are the two mutually dependent variables associated
with the same trader, their probability distributions follow the relation [59]

P (x)dx = g(λ)dλ. (2.6)

Differentiating Eqn. (2.5) with λ one can find out the derivative dλ/dx and substi-
tuting in Eqn. (2.6) one gets

P (x) =
C

x2
[λ−χ + (1− λ)χλ−χ−1]−1. (2.7)

For this equation we see that for large λ the term within [..] is of the order of unity.
Therefore in this range P (x) ∼ x−2 as in the Pareto law. This is an indication that
even for (α, β) > 0, Pareto law holds good and in the following we present numerical
evidence in support of that.

The system is prepared by assigning uniformly distributed random fractions for
the saving propensities λi to all N traders. Here λis are quenched variables and
therefore they remain fixed during the subsequent time evolution of the trading
system. Consequently all observable that we measured are averaged over different
uncorrelated sets of the {λi} values. While assigning the λ values we first draw N
uniformly distributed random fractions, but then to avoid the situation when λmax is
very close to unity by chance we scale them proportionately so that λmax = 1−1/N
in every {λi} set. First a pair of values for (α, β) is selected. Two types of initial
wealth distributions are used: (i) xi = 1 for all i and (ii) xis are uniformly distributed
random numbers with 〈x〉 = constant. The sequence of bipartite trading begins by
randomly selecting pairs of traders using Eqn. 2.2. Once a pair is selected, their
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Figure 2.2: (Color online) (a) Wealth distribution P (x,N) vs. x for α = β = 0, 1/2,
1 and 2 and for N = 256 (black), 1024 (red) and 4096 (blue) (N increases from left
to right). The slopes of these curves yield ν = 1.00(3) consistent with the Pareto
law. (b) P (x,N) for (α, β) = (∞, 0) (black) and (0,∞) (red) for N= 1024 which
almost overlapped. (c) P (x,N) for (α, β) = (∞,∞), the distribution is uniform
followed by a hump due to transactions between the richest and the next richest
traders only.

total individual invested amount δij is calculated using Eqn. 2.3 and this amount
is shared again between them using Eqn. 2.4. This constitute a single bipartite
trading and the dynamics is followed over a large number of such trading events.

The wealth distribution changes with time from the initial distribution to more
and more flat distribution. After a certain time the system passes through the quasi
stationary state when no appreciable change in the wealth distribution is observed.
It is also observed that the distribution is robust with respect to the precise values
of the parameters α and β used. In Fig. 2.2(a) the wealth distribution P (x,N)
has been plotted with x for four sets of parameter values namely, α = β = 0, 1/2,
1 and 3/2 and for three system sizes N = 256, 1024 and 4096. Apart from slight
fluctuations the four curves for a given system size nearly overlap on one another.
On a double logarithmic scale the slopes of the curves give an average estimate for
ν = 1.00(3) consistent with the Pareto law as observed in the CCM [57]. This
indicates that the wealth distribution is robust with respect to the parameter values
in this region. The non-zero values of α and β only controls the frequencies with
which different traders are called for trading.

Next we consider the case when one of the two parameters (α, β) is infinity and
the other one is zero. If α = ∞ the richest trader is always selected as the first
trader. The other trader is selected among the other N − 1 traders with uniform
probability. As shown in Fig. 2.2(b) here also we see that the Pareto law holds
good. For α = ∞ and for finite β first the richest trader is selected and then the
second trader is selected with probability ∝ xβj . We observe numerically that here
also Pareto law works very well.

However the situation is very different when both (α, β) take very large values.
In this situation almost always only the rich traders are called for transactions. The
system passes through an extremely long QSS and the number of traders taking part
in trade does not increase at all. For example in the limiting case of (α, β) = (∞,∞)
it implies that always only the richest and the next richest traders are selected for
transactions with probability one but not any other trader. If their wealths are
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Figure 2.3: The phase diagram in the positive quadrant of the (α, β) plane. The
Pareto law is valid in the entire region. The origin corresponds to the CCM model
where the trade network is a random graph. At the corners (∞, 0) and (0,∞) the
richest trader trade in every transaction, so that the network is a star-like graph but
the wealth distribution still follows Pareto law as shown in Fig. 2.2(b). However at
the corner (∞,∞) the trade takes place between the top two richest traders and the
network shrinks to a single dimer. The wealth distribution here is uniform followed
by a hump as shown in Fig. 2.2(c).

very high then the trading will be limited only between them. Therefore the wealth
distribution for the single λi set has two very high peaks and wealths of all other
traders are small and uniformly distributed. Consequently the quench averaged
wealth distribution is uniform throughout followed by a hump at the highest value
of wealth (Fig. 2.2(c)). A systematic analysis with many different (α, β) pairs leads
us to conclude that Pareto law holds good in the positive quadrant of the entire
(α, β) plane.

In Fig. 2.3 we exhibit this behavior in the positive quadrant of the (α, β) plane
where Pareto law is valid and the limiting points are marked by circles with their
characteristics. The origin at (α = 0, β = 0) represents the CCM model where
traders are selected randomly with uniform probabilities. As explained below, the
trade network corresponding to this point is a random graph (RG). As explained be-
fore that at the two corners (∞, 0) and (0,∞) the richest trader always participates
in every transaction. Therefore the corresponding trade networks have star-like
structures. In the last corner of (∞,∞) the trade takes place only between the
richest and the next rich traders and therefore the graph reduced to a single dimer
only.

2.5 The Trade Network

One can associate a network with this trading system. Each trader is a node of the
network. Initially the network has only N nodes but no links. First the system is
allowed to reach the QSS and then the network starts growing. Every time a pair
of traders makes a trade for the first time, a link is introduced between their nodes.
There after no further link is added between them irrespective of their subsequent
trades and they remain connected with a single link. As the system evolves more and
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Figure 2.4: (Color online) Growth of the trade network. (a) Plot of the average size
of the giant component 〈sm(ρ,N)〉 with the link density ρ, for α = β = 1 and for N
= 128 (black), 256 (red), 512 (blue) and 1024 (magenta), (N increases from right
to left). The inset shows a data collapse of the same plots with ρN θ, and θ = 0.88.
(b) The percolation link density ρc(N) is plotted with N−θ(α) where θ(α) = 0.88,
0.92 and 1 for α = β =1 (black), 3/4 (red), and 1/2 (blue) respectively (α increases
from left to right). The inset plots θ(α) with α.

more new traders take part in the trading dynamics and consequently the number
of links grow in the network. For α = β = 0 the growth of the network is exactly
the same as that of the random graph, however it is much different when (α, β) > 0.
Since the rich nodes are preferentially selected they acquire links at a faster rate
than the poor nodes. The degree ki of the node i is the number of distinct traders
with whom the i-th trader has ever traded. The dynamics is continued for a certain
time T till the average degree 〈k〉 of a node reaches a specific pre-assigned value.

In general there are two characteristic time scales involved. At the early stage
the network grows with multiple components with different sizes. At time T1 the
growing network becomes a single component connected graph. A second time scale
is T2 when the whole network is a N -clique graph in which each node is linked
to all others, which means each trader has traded at least once with all others.
Unlike random graphs the growth of the network is highly heterogeneous and the
rich traders have much larger degrees than the poor traders. Since poor traders
are selected with low probabilities they take much longer times to be a part of the
network. Consequently T1 is found to be very large and of the same order as T2.
Numerically it is easier to calculate T2, one keeps track of the number of distinct
links and stops only when this number becomes just equal to [N(N − 1)]/2. On the
other hand to calculate T1 one follows the growth of the giant component and stops
when the giant component covers all N nodes. A Hoshen-Kopelman cluster counting
algorithm [63] is used to estimate the size of the giant component. For the ordinary
CCM with α = β = 0 since both traders are chosen with uniform probability, the
generated graph is a simple Erdős-Rényi random graph characterized by a Poissonian
degree distribution [3].

The growth of the giant component is studied with increasing number of links n
in the in the trade network. The average fraction of nodes in the giant component
is denoted by 〈sm(ρ,N)〉 which is the order parameter in this percolation problem.
This has been plotted in Fig. 2.4(a) using a semi-log scale with link density ρ =



26 CHAPTER 2. WEIGHTED TRADE NETWORK IN A MODEL OF ...

10
-3

10
-2

10
-1

10
0k/N

0.75
10

-3
10

-2
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

P
(k

,N
)N

1.
62

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
α

2

3

4

5

6

γ k(α
)

(a) (b)

Figure 2.5: (Color online) (a) The finite-size scaling of the degree distributions
P (k,N) for α = β = 1, for N = 256 (black), 1024 (red) and 4096 (blue), and for
〈k〉 = 1. Direct measurement of slopes give γk(1) = 2.18(3). The best data collapse
corresponds to ηk(1) = 1.62 and ζk(1) = 0.75 giving γk(1) = 2.16(3). (b) The plot
of γk(α) vs. α.

n/[N(N − 1)]/2 in the network. Four curves shown in this figure correspond to N
= 128, 256, 512 and 1024 for α = β = 1, the system size increasing from right to
left. The inset shows that a data collapse can be obtained by scaling the ρ axis by
a factor N θ with θ = 0.88. The critical density of percolation transition ρc(N) is
defined as that particular value of ρ for which the average size of the giant component
〈sm(ρ,N)〉 = 1/2. In Fig. 2.4(b) we show that how the critical percolation threshold
ρc(N) depends on N by plotting it with N−θ for α = β = 1/2, 3/4 and 1. It has
been observed that the exponent θ(α) is dependent on α in general and in the inset
of this figure we plot θ(α) vs. α. We see that for α ≤ 1/2, θ(α) = 1 but for α > 1/2,
θ(α) gradually decreases. For Erdős-Rényi random graphs it is known that θ = 1
and therefore this result gives an indication that the trade network seems to be
different from random graphs for α = β > 1/2.

2.6 Degree Distribution

The degree distribution has been studied similar to random graphs. We keep track
of the average degree 〈k〉 of the network which is related to the number of links n of
the network as n = 〈k〉N

2
. First the degree distribution has been studied for 〈k〉 =

1 and for different system sizes. For an assigned set of values of (α, β), for a given
set of values for the saving propensities {λi} and for a specific value of N once 〈k〉
= 1 is reached we calculate the degree distribution considering all components of
the network on the same footing. The network is then refreshed by removing all
links and a second network is constructed and so on. The dynamics is continued for
the same values of the parameters and the same set of {λi}s till a large number of
networks are generated and their mean degree distribution is calculated. The entire
dynamical process is then repeated with another uncorrelated set of {λi}s and the
degree distribution has been averaged over many such sets.

In Fig. 2.5(a) we show the finite-size scaling plot of the average degree distri-
bution P (k,N) vs. k for α = β = 1 and for N = 256, 1024 and 4096. On a
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Figure 2.6: (Color online) Probability distribution P (w, α) of the link weights. (a)
Plots for the N -clique graphs with N =64 and for α= 0 (black), 1/4 (green), 1/2
(blue), 3/4 (magenta) and 1 (red) and β =1 always. (b) Plots for 〈k〉 = 5 with
α = β = 1 and for the system sizes 128 (black), 256 (red) and 512 (blue). Direct
measurement of slopes gives 2.52, 2.53 and 2.51 respectively.

double logarithmic scale all three curves show quite long scaling regions followed by
humps before the cut-off sizes of the degree distributions. The cut-off sizes of the
distributions shifts to the larger values of k approximately by equal amounts on the
double-log scale when the system size has been enhanced by the same factor. From
the direct measurement of slope in the scaling region we estimate γ(1) = 2.18(3).
Almost the entire degree distribution obeys nicely the usual finite-size scaling anal-
ysis and an excellent collapse of the data is observed confirming the validity of the
following scaling form:

P (k,N) ∝ N−η(α)G[k/N ζ(α)] (2.8)

where the scaling function G(y) has its usual forms like, G(y) ∼ y−γ(α) as y → 0
and G(y) approaches zero very fast for y >> 1. This is satisfied only when γ(α) =
ζ(α)/η(α). The exponents η(α) and ζ(α) fully characterize the scaling of P (k,N)
in this case. To check the validity of the equation we attempted a data collapse by
plotting P (k,N)Nη(1) vs. k/N ζ(1) by tuning the values of η(1) and ζ(1). The values
obtained for best data collapse are ηk(1) = 1.62 and ζk(1) = 0.75 implying that in
the infinite size limit P (k,∞) ∼ k−γ(1) with γ(1) = 2.16(3). Tuning α and β to
other values it is observed that the degree distribution exponent γ does depend on
these two parameters. In Fig. 2.5(b) we show a plot of γk(α) with α which decreases
to ≈ 2 at α = 2.

2.7 The Weighted Network

Within a certain time T a large number of bipartite trades take place between
any arbitrary pair of traders. The total sum of the amounts δij invested in all
trades between the traders i and j in time T is defined as the total volume of
trade wij = ΣT δij. Therefore wij is regarded as the weight of the link (ij). The
magnitudes of weights associated with the links of the trade network are again
found to be highly heterogeneous. This is primarily because within a certain time T
a rich pair of traders trade many more times than a rich-poor or a poor-poor pair.
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Figure 2.7: (Color online) (a) Nodal strength distributions P (s,N) with strength s
with α = β = 1, for N = 256 (black), 1024 (red) and 4096 (blue) (N increases from
left to right) and for 〈k〉 = 5. Direct measurement of the slopes of these curves gives
γs = 2.50(5). (b) The Finite-size scaling analysis of the data (using same colors) in
(a) gives ηs = 1.64 and ζs = 0.67 estimating the value of γs = ηs/ζs = 2.45(5).

In addition the invested amounts depend on the mean wealths 〈xi〉 of the traders
involved as well as their saving propensity factors λi. The probability distribution
P (w,N) of the link weights are calculated when the average degree 〈k〉 reaches
a specific pre-assigned value. As before, this distribution has also been averaged
over many weighted networks for one {λi} set and then further averaged over many
uncorrelated {λi} sets.

First we studied the case when the trade networks is a N -clique graph, i.e., when
each trader has traded with all other traders at least once. Here each node has same
degree i.e., P (k) = δ(k− (N − 1)) and 〈k〉 = N − 1. The required time T2 increases
rapidly with N as described in section 2.3 and we could study small system size N
= 64 only. The distribution has a very long tail and therefore we used a lin-log scale
for plotting. In Fig. 2.6(a) we show the plots of P (w, α) with ln(w) for different
values of α = 0, 1/4, 1/2, 3/4 and 1 and β = 1. Each curve is asymmetric and has a
single maximum. The position of the peak shifts towards larger values of ln(w) as α
increases. If Fig. 2.6(b) a similar plot has been shown for 〈k〉 = 5 for three network
sizes N = 128, 256 and 512 and for α = β = 1. On a double-logarithmic scale
each curve has a considerable straight portion. This indicates a power law decay
like P (w,N) ∝ w−γw . The corresponding slopes give estimates for the exponent γw
as 2.52, 2.53 and 2.51 for the three system sizes respectively, so that on the average
γw = 2.52(3).

The strength of a node si = Σjwij where j runs over all neighbors ki of i, is a
measure of the total volume of trade handled by the i-th node. Nodal strengths varies
over different nodes over a wide range. We first study the probability distribution of
nodal strengths. In Fig. 2.7(a) the strength distribution P (s,N) has been plotted
for the average degree 〈k〉 = 5, for α = β = 1 and for the network sizes 256, 1024 and
4096. Extended scaling regions at the intermediate regions of the curves indicate
that P (s,N) also follows a power-law decay function P (s,N) ∼ s−γs in the limit of
N → ∞. Direct measurements gives an estimate of γs(1) ≈ 2.5. In Fig. 2.7(b) we
try a similar finite size scaling of the same data giving ηs(1) = 1.64 and ζs(1) = 0.67
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Figure 2.8: (Color online) (a) Plot of nodal strength 〈s(k)〉 with degree k for N =
16834 and for α = β = 1/2 (black), 3/4 (green), 1 (blue), 5/4 (magenta) and 3/2
(red) (α decreases from left to right). The slopes φ(α) of these curves are plotted
in the inset. (b) Plot of average wealth 〈x(k)〉 with degree k for N = 16384 and for
α = β = 1/2 (black), 3/4 (green), 1 (blue), 5/4 (magenta) and 3/2 (red) (α increases
from left to right). The slopes µ(α) of these curves are plotted in the inset.

giving γs(1) = 2.45(5).
Quite often weighted networks have non-linear strength-degree relations reflecting

the presence of non-trivial correlations, example of such networks are the airport
networks and the international trade network. For a network where the link weights
are randomly distributed, the 〈s(k)〉 grows linearly with k. However a non-linear
growth like 〈s(k)〉 ∼ kφ with φ > 1, exhibits the presence of non-trivial correlations.
In Fig. 2.8(a) we plot the variation of 〈s(k)〉 vs. k for a system size N = 16384 and
for different values of α = β = 1/2 (black), 3/4 (green), 1 (blue), 5/4 (magenta)
and 3/2 (red) (from bottom to top). The slopes of these plots give estimates for the
exponent φ(α) which gradually increased with α and the variation has been plotted
in the inset. In the same context we also studied how the mean wealth of a trader
depends on its degree. The mean wealth of a trader 〈x(k)〉 has been plotted in Fig.
2.8(b) with its degree k for the same system sizes as in Fig. 2.8(a) and for the same
values of parameters. A power law growth has been observed for all values of α:
〈x(k)〉 ∼ kµ(α). The slopes of these plots give estimates for the exponent µ(α) which
has been plotted in the inset of Fig. 2.8(b).

2.8 Conclusion

To summarize we have studied the different structural properties of a trade net-
work associated with the dynamical evolution of a model of wealth distribution
with quenched saving propensities. In this model distinguishable traders make pref-
erential bipartite trades among themselves and in this way create links. They are
selected for trade preferentially using a pair of continuously tunable parameters,
where the rich traders are picked up more frequently for trade than poor traders.
This creates huge heterogeneity in the system which has been reflected in the power-
law distributions of the nodal degree and the link weight distributions measuring
the volumes of trade. We present numerical evidence that the associated individual
wealth distribution follows the well known Pareto law robustly for all positive values
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of the parameters.



Chapter 3

Conservative Self-organized
Extremal Model of Wealth
Distribution

3.1 Introduction

Pareto distribution shows the inherent inequality presence in the wealth distribu-
tion of the society. Most of the people are poor and few are rich in the society.
It is observed from the income data of various countries that Pareto law is more
appropriate for rich people, i.e., the tail end of the wealth distribution. Wealth
distribution of the poor people is different from Pareto distribution. For example,
tax return amount distribution in US and Japan shows log-normal distribution in
the middle range followed by a power law for high income people [64], UK data of
income shows an exponential decay which is followed by a power law in the high
income range [39], income data in Brazil for 2004 shows an almost Gaussian law
for the low and middle income groups where as high salary groups are described
approximately by a power law [41] and there is evidence for power law tail of the
wealth distribution in India as well [65].

Application of Statistical Physics with the presence of Complex Network in
Econophysics has been discussed in Chapter 2. Here we will show another ap-
plication of Statistical Physics in Econophysics and the topological effect on it. An
individual member of the society is known as an agent in this description. The
wealth of the people evolves due to the economic interaction between themselves,
called trades. The microstate specified by the precise description of the wealth of
every agent changes after each transaction. Their wealth change due to interaction
among themselves. This interaction is the mutual bipartite trade among different
pairs of agents. Thus the wealth distribution evolves due to such repeated interac-
tions and finally assumes a time independent form. A review of all these models has
been published in [50]

31
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3.2 An Extremal Model of Wealth Distribution

Pianegonda, Iglesias, Abramson and Vega (PIAV) introduced the idea of extremal
dynamics for the evolution of wealth in one dimension [52, 66]. They assumed that
though all agents try to improve their economic status, it is the poor agents who feel
the stronger pressure to uplift their economic status. In PIAV model, the extreme
situation is modeled when the poorest agent initiates the trade. In PIAV model all
agents are arranged on an one dimensional lattice with periodic boundary condition.
Each site represents an agent. Initially, all the agents have been assigned random
values of wealth between 0 and 1 and are drawn from a uniform distribution. An
extremal dynamics is applied to uplift the status of the poorest agent. The dynamics
consists of the following two steps: (i) A search is carried out to find the poorest
agent in the system and its wealth is replaced with a new random number. (ii) If the
poorest agent gains or loses ∆W amount of wealth, ∆W/2 amount of wealth will be
subtracted from or added to the wealth of the two nearest neighbors to keep the total
wealth conserved in the system. After a large number of such recursions of the two
steps the system evolves to a time independent stationary state. In the stationary
state wealth distribution P (w) jumps from zero to a maximal value at a critical
value of wc and then it decays as w increases as the Boltzmann-Gibbs exponential
function. The PIAV model is a Self-organized Critical (SOC) [34, 67] model where
starting from an arbitrary distribution of wealth the dynamical evolution of the
model takes the system to the stationary state marked by a fixed critical value of
wc in the absence of any tuning parameter. The stationary state is critical since
fluctuations of all length and time scales emerge spontaneously in such a system.
This model is very similar to the non-conservative self-organized extremal model
for the ecological evolution of interacting species introduced by Bak and Sneppen
(BS) [35]. However we will see in the following that in spite of this similarity our
modified version of the PIAV model is likely to have a different critical behavior than
the BS model. In general SOC models are often compared with the deterministic [34]
and the stochastic [68] versions of the sandpile model.

3.3 Continuous Phase Transition in a Wealth Dis-

tribution Model

Ghosh, Basu, Chakraborti and Chakrabarti studied a related model with the bipar-
tite transaction rule [69]. They Considered N particles and the state of the particles
are characterized by the wealth or energy {wi}, where i = 1, 2....N . At any arbitrary
time t a particle i of wealth xi below a threshold energy level wc is chosen and it will
do a bipartite trade with a another agent j randomly chosen from the remaining
(N − 1) agents. The bipartite trading rule is defined as:

wi(t+ 1) = ǫ(t)(wi(t) + wj(t)))

wj(t+ 1) = ǭ(t)(wi(t) + wj(t))). (3.1)

Where ǫ(t) is a freshly generated random number from a uniformly distributed
random number within range [0 : 1] and ǭ = 1 − ǫ. The fraction of agents having
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Figure 3.1: (Color online) Time evolution of the wealth wi at different sites of an
1d lattice of size N = 512. The series of snapshots are taken at times t = (a) 0,
(b) 500, (c) 1000, (d) 500000, (e) 5000000 and (f) 15000000. The position of the
poverty line at whalf

c (512) = 0.8070 is shown by the red line. With time the wealth
values gradually move up beyond the poverty line and stays there in the stationary
state during further evolution.

wealth less than w is considered as order parameter. They claimed that the system
exhibits a continuous phase transition at a critical value of the threshold wealth wc.
A number of critical exponents have been measured to characterize the transition
and some of them are found to be close to the exponents in the Manna model of
Self-Organized Criticality [68].

Based on our publication [70] we present an extensive numerical study of the
modified version of a conservative self-organized extremal model whose motivation
has been drawn from the wealth distribution of the people in a society. We consider
this model as one of the few examples of non-dissipative SOC systems where the
entire wealth of the society is strictly conserved, for example the fixed energy sand-
pile [71]. Estimation of a number of critical exponents of our model suggests that
this model belongs to a new universality class perhaps because of strict conservation
of wealth is maintained in its dynamical rules.

3.4 The Minimal Wealth Model

We have considered a model with a conservative extremal dynamics for studying the
evolution of wealth distribution in a society. In a bipartite transaction one agent is
necessarily selected as the one with the globally minimal value of wealth wmin. The
second agent is chosen randomly with uniform probability from neighbors of the first
agent. This neighbor list has been defined in different ways for different graphs. We
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Figure 3.2: (Color online) Schematic diagram of the method to find the global
minimum [72, 73]. 16 blocks with 16 random numbers in the level 1 represent 16
sites of an 1d lattice. Successive blocks form a pair. The block with minimum
number of the pair is forwarded from level 1 to level 2 and a pointer is assigned
between the two blocks. A similar procedure is repeated for higher levels up to the
level where only one block with the global minimum number exists. Moving from
the top level in the reverse direction of the pointer to the lowest level one can find
the position of the site with global minimum.

have studied this model on four different graphs, namely, (i) 1d regular lattice with
periodic boundary condition (ii) two dimensional (2d) square lattice with periodic
boundary condition (iii) the Barabási - Albert (BA) scale-free graph [5] and on
an (iv) N -clique graph. On every graph the nodes represent agents and the nearest
neighbors of each node connected by direct links constitute the neighbor list of every
agent. We report elaborately the results of our model on an 1d lattice and mention
the key results of the same model studied on other graphs in tables.

The dynamics starts with N agents, each having an amount of wealth wi, {i =
1, N} drawn from a uniform distribution with the average 〈w(N)〉 =1 irrespective
of the system size N . The discrete time t is the number of bipartite transactions.
At an arbitrary time t first the site i = imin is searched out which has the minimal
wealth wmin. The other agent j is selected randomly with uniform probability from
the neighbors of imin. Both agents invest their entire amount of wealth. Therefore
the total invested amount by both the traders is: δij(t) = wi(t)+wj(t). This amount
is then randomly divided into two parts and received by them also randomly:

wi(t+ 1) = ǫ(t)δij(t) wj(t+ 1) = ǭ(t)δij(t). (3.2)

where ǫ(t) is a freshly generated random fraction and ǭ = 1 − ǫ. These transac-
tions are repeated ad infinitum. After some relaxation time the system reaches a
stationary state when the wealth distribution assumes a time independent form.

In 1d a linear chain of N sites with periodic boundary condition has been con-
sidered where the neighbor list of an arbitrary site i consists of the two nearest
neighboring sites at i ± 1. Therefore the second agent j is selected randomly with
equal probability from this list. If wmin is very small then the probability that it
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Figure 3.3: (Color online) The system is relaxing from initial state to the stationary
state forN = 210 (black), 211 (red) and 212 (blue). (a)The position of the poverty line
wc(T,N) has been plotted with the relaxation time T . (b) The same data has been
plotted with deviation wc(N)− wc(T,N) vs. T on a log− log scale. Extrapolation
of slopes of these curves gives an estimate for the dynamical exponent z ≈ 2.84.

will be replaced by an even smaller wealth after trade is also small. However this
probability gradually increases as wmin increases. As the sites with the minimal
values of wealth are systematically replaced, very soon all nodes with small w values
are replaced by larger values of w resulting a vacancy in the small w region. This is
explained pictorially in Fig. 3.1. On an 1d lattice with N = 512 we plot the lattice
positions i along the abscissa and the corresponding wealth wi along the ordinate.
As time increases a vacant region gradually forms for small values of w for all sites.
If on the average the wealth of none of the agent is below a certain threshold value
w, it is called the ‘poverty line’. In Fig. 3.1 the poverty line gradually moves up
with time and finally settles at a critical value whalf

c (512) = 0.8070 at the stationary
state. This behavior is the same for all system sizes N but with different values
of wc(N). Unlike the model in [69] here the critical poverty line is spontaneously
determined by the dynamical evolution of the system where no fine tuning is nec-
essary which is the distinctive signature of self-organization and we will see in the
following that the model exhibits critical behavior as well.

To find the agent with minimal wealth a brute-force search takes cpu ∼ N . A
much faster algorithm to search for the globally extremal (minimal or maximal)
site was proposed by Grassberger [72, 73] which stores the data in a hierarchical
structure. This takes cpu ∼ lnN . For sites of a 1d lattice of size N = 2n, one
starts with N number of blocks in level 1. Each block contains the value of wealth
wi of each site. Successive blocks form N/2 pair of blocks in level 1. The minimal
values of wealth from each pair of level 1 are stored in the next level (level 2) in N/2
blocks and a pointer is assigned between the corresponding blocks of the two levels.
This procedure is repeated up to level the (n+ 1) where only one block containing
the global minimal value of the wealth wmin exists. The location of the site with
minimal wealth wmin can be found by going in reverse to the pointer direction from
the top level to the bottom level. For each time if there is any change in the values
of the wealth of the blocks or the sites in level 1 one has to update the the wealth
values with pointer direction from ground to top level accordingly. A schematic
diagram of the procedure is shown in Fig. 3.2. We have used this method for 1d,
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Figure 3.4: (Color online) Estimating the relaxation times. (a) The average wealth
square 〈w2(t, N)〉 per agent has been plotted with time t for N = 28 (black), 210

(red) and 212 (blue) and after a long time they approach the stationary state value
〈w2(∞, N)〉. (b) The scaled deviation [〈w2(t, N)〉−〈w2(∞, N)〉]N0.55 has been plot-
ted with the scaled variable tN−2.5. The relaxation exponent z = 2.70.

2d and N -clique graphs. For BA graphs we used the brute-force algorithm.

3.4.1 Relaxation to Stationary State

We first estimate the relaxation time required for the system to reach the station-
ary state. During this relaxation period the wealth distribution gradually changes
starting from its initial uniform distribution to its time independent form in the
stationary state. The relaxation time has been estimated as a function of deviation
of the poverty line from its critical value in two ways.

For a given system size N we have simulated our model up to 106 time steps
and calculated the wealth distribution P (T,w,N) at 100 time instants T at the
interval of 104 steps. These distributions are calculated for a sample size of ∼ 106

independent runs. The value of the poverty line wc(T,N) at time T is determined
by the value of w where P (T,w,N) is the maximum. This estimation is done for all
values of T . In Fig. 3.3(a) we plot on a lin−lin scale wc(T,N) vs. T vs. for N = 210,
211 and 212. We see that in each case the wc(T,N) saturates to its stationary state
value wc(N) as time T gradually increases. These data have been replotted in Fig.
3.3(b) using a log− log scale as wc(N)−wc(T,N) vs. T where we have used wc(N) =
0.8242, 0.8375 and 0.8383 to obtain the best straight line plots. The slopes of these
straight lines are 0.3910, 0.3647 and 0.3562 respectively which are then extrapolated
with N−1.626 to obtain the exponent z as [wc(N)−wc(T,N)] ∝ T−1/z with z ≈ 2.84.

In a second method we calculated 〈w2(t, N)〉 with time t starting from its initial
value when the distribution is uniform. After a long time this quantity saturates
to its stationary value 〈w2(∞, N)〉. In Fig. 3.4(a) we show the plots of 〈w2(t, N)〉
vs. t on a log− log scale. In Fig. 3.4(b) [〈w2(t, N)〉 − 〈w2(∞, N)〉]N0.55 has been
plotted with the scaled value of time tN−2.5 using 〈w2(∞, N)〉 = 0.057, 0.0607 and
0.061 for N = 28, 210 and 212 respectively. A nice data collapse has been obtained
with the following scaling form

[〈w2(t, N)〉 − 〈w2(∞, N)〉]N0.55 ∼ Fz(tN
−2.5) (3.3)
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Figure 3.5: An exhibition of the correlation that sets in the system. In a single
run the lattice sites imin with globally minimal wealth in successive time steps are
marked for a system of size N = 512 in 1d. The gradually increasing duration of
correlation has been exhibited by time windows of increasing lengths: (a) 500, (b)
3000 and (c) 6000.

where the scaling function Fz(x) varies as x
−1/z for small x. A direct measurement

of the slope of the scaled plot gives an estimate of 1/z = 0.37 which corresponds to
z = 2.70. We conclude an average value of z = 2.77(7).

3.4.2 Correlation in the Stationary State

Starting from an uncorrelated wealth distribution the system becomes more and
more correlated as time passes. This is reflected in the fact that the probability of
occurrence of the minimal sites close to each other in successive time steps gradually
increases. At the early uncorrelated stage the position of the minimal site at the
next time step is likely to be anywhere in the lattice. However as time increases,
the poverty line moves up, consequently wmin increases and the probability that the
minimal site at the next time step occurring at the same site or at the neighboring
updated site also increases. This is shown in Fig. 3.5 using a 1d lattice of N = 512.
For a single run it is observed that the locations of wmin are quite random (Fig.
3.5(a)). However as time evolves these positions gradually become more correlated
(Figs. 3.5(b) and 3.5(c)). In general one can consider the successive jumps of imin

positions constituting a Lévy flight random walk [74]. We see below that indeed
their flight lengths follow a power law distribution.

The correlation in the stationary state is quantitatively measured by the proba-
bility distribution P (ℓ) of the distance of separation ℓ between successive minimal
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Figure 3.6: (Color online) (a) The probability P (ℓ,N) that sites with minimal wealth
at successive time steps are separated by a distance ℓ has been plotted with ℓ for
the system sizes N = 27 (black), 210 (red) and 213 (blue). The slopes are -2.64, -2.81
and -2.89.(b) The finite-size scaling of P (ℓ,N)Nηπ vs. lN−ζπ with ηπ = 2.89 and
ζπ = 1 and therefore π = ηπ/ζπ = 2.89(5).

sites using periodic boundary condition. This distribution measured in the station-
ary state has been plotted in Fig. 3.6(a) for different system sizes N = 27, 210 and
213. The value of P (ℓ) for ℓ = 0 and 1 are approximately 0.4575(1) and 0.4820(1)
and then it decreases as a power law P (ℓ) ∼ ℓ−π with increasing ℓ. A direct mea-
surement of slope gives π ≈ 2.89. Fig. 3.6(b) exhibits the finite-size scaling of the
same data when the ℓ and P (ℓ,N) axes are scaled as:

P (ℓ,N)Nηπ ∝ Fπ(ℓN
−ζπ). (3.4)

where Fπ(x) is a universal scaling function with the scaling exponents ηπ = 2.89
and ζπ = 1. From this scaling analysis we get π = ηπ/ζπ = 2.89(5).

There exists a spatial correlation too in this model. A two point correlation
function has been measured in the stationary state. The average correlation between
two sites situated at a distance of separation x has been defined as:

C(x) = 〈w(0)w(x)〉 − 〈w〉2 (3.5)

where 〈w〉 is always set equal to unity. We assume a power law decay for the
correlation, i.e., C(x) ∼ x−χ for x → ∞. For 1d a plot of (not shown) C(x) vs. x
on a log− log scale indicates a power law for large x values. However considerable
variation of slopes exists for system sizes N = 28, 210 and 212. The slopes are: -1.17,
-1.29. -1.34 respectively which extrapolates to a value of χ = 1.5(1) in the limit of
N →∞. Our estimate for χ in 2d is 2.2(2).

3.4.3 Wealth Distribution in the Stationary State

Next we estimated the probability density distribution P (w,N) of wealth in the
stationary state of the system of size N . The distribution grows very rapidly near
wc(N) for all values of N and then decays very fast. In Fig. 3.7(a) we show the
plot of P (w,N) vs. w for N = 27, 210 and 213. All of them have similar variations
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Figure 3.7: (Color online) For Minimal Wealth model in 1d. (a) The wealth distri-
bution P (w,N) in the stationary state for N = 27 (black), 210 (red) and 213 (blue).
(b) A finite-size scaling using P (w,N)N−0.04 vs. [w − wc(N)]N0.73 for system sizes
N = 211 (black), 212 (red) and 213 (blue).
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Figure 3.8: (Color online) Gaussian fit of the wealth distribution P (w,N) in the
stationary state for seven different system sizes N = 27 to 213 in 1d. The sequence
starts with the distribution for N = 27 at the extreme left and is shifted to the right
by 0.2 when system size is multiplied by a factor of 2.

but with increasing system size the curves gradually become sharper. Therefore
we tried a finite-size scaling analysis in Fig. 3.7(b) for the growing region and for
N = 211, 212 and 213. A nice data collapse is observed when axes are scaled and
P (w,N)N−0.04 has been plotted with [w − wc(N)]N0.73.

The functional form of the decay of the probability distribution P (w,N) has been
studied right after the maximal jump at wc(N). This part fits very well with the
Gaussian form:

P (w,N) =
A(N)√
2πσ(N)

exp[−(w − µ(N))2

2σ2(N)
] (3.6)

In Fig. 3.8 we showed P (w,N) vs. w on a lin− lin scale for seven different system
sizes: N = 27, 28, ..., 213. In each case the fitting curve is indistinguishable from the
data. We observe a systematic variation of A(N), µ(N) and σ(N) with system size
N . For example A(N) ≈ 511.5 − 1828N−0.294, µ(N) ≈ −1.10 + 62.5N−1.215 and
σ(N) ≈ 0.64 + 0.429N−0.436.
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Figure 3.10: A portion of the time series of minimal wealth values in successive time
steps is shown for a 1d system with N = 256 and wc(256) = whalf

c (256) = 0.8010 in
the stationary state. It shows that depending on the value of wo an avalanche can
be broken into a hierarchy of avalanches. For this run the system has been relaxed
for the initial tskip = 5× 108 time steps.

The precise value of wc(∞) is calculated by extrapolating wc(N) values which are
calculated using the following two methods. We have seen in Fig. 3.7(a) that the
probability distribution of P (w,N) becomes increasingly steeper with increasing N .
For a certain size N we defined whalf

c (N) as the value of w for which P (w,N) is
half of its maximum value. In a second method the wc(N) has been calculated in
the following way. A pair of successive points on the P (w,N) vs. w curve which
has the largest slope is found out. A straight line joining these two points is then
extrapolated to meet the w axis at wslope

c (N). The pair of values of whalf
c (N) and

wslope
c (N) for eight N values 27 to 214 are then extrapolated with N−κ. A least

square fit of straight line has been done for trial values of κ starting from 0.20 to
1.20 at an interval of 0.001 and the errors have been calculated. The errors are
minimal for κ(half) = 0.649 and κ(slope) = 0.657. Using these two values of the
exponent κ we extrapolate wc(N) values with N−κ in Fig. 3.9 to meet the wc(N)
axis at 0.8174 and 0.8176 respectively. We conclude a value for wc(∞) for 1d model
as 0.8175(2).



3.4. THE MINIMAL WEALTH MODEL 41

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

s

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

P
(s

,N
)

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

sN
-2.18

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

P
(s

,N
)N

2.
44

(a) (b)

Figure 3.11: (Color online) For 1d Minimal Wealth model. (a) The avalanche size
distribution for N = 212 (black), 213 (red) and 214 (blue). (b) A finite-size scaling of
the data in (a) with scaling exponents ητ = 2.44 and ζτ = 2.18 giving the avalanche
size exponent τ = ητ/ζτ ≈ 1.12(1).

3.4.4 Avalanche Size Distribution

In the stationary state successive values of minimal wealth wmin fluctuates with
time. If a certain reference wealth is fixed by hand at w = wo then the successive
wmin appear below and above wo line. One defines a wo-avalanche as the sequence
of successive bipartite trades whose wmin values are smaller than wo. The size s of
the avalanche measures the duration of the avalanche i.e., at times t and t + s + 1
the wmin > wo, whereas at every time step from t+1 to t+ s the wmin < wo. When
wo is set equal to wc(N) it is called a critical avalanche. This is explained in Fig.
3.10 where part of the wmin time series for N = 256 and wc(256) = whalf

c (256) =
0.8010 is displayed discarding the initial tskip = 5 × 108 time steps. For wo = 0.71
an avalanche of size 53 breaks into two avalanches of sizes 25 and and 27 when wo is
reduced to 0.66. On further reduction of wo to 0.56 these two avalanche break into
even smaller avalanches of sizes 18, 6 and 10, 16 respectively. Thus any avalanche
can be splitted into a hierarchy of smaller avalanches if wo value is lowered [75].
On the other hand if wo is raised the average avalanche size increases and becomes
infinite at certain value of wo.

At the critical point the distribution of the avalanche life-times has a power law
tail in the limit of N → ∞: P (s,∞) ∼ s−τ . In the stationary state we used
wo = whalf

c (N) and measured life-times of a large number of avalanches for different
system sizes and plot the probability distributions P (s,N) vs. s using a log− log
scale in Fig. 3.11(a). Each curve has a straight portion in the intermediate regime
of the avalanche sizes and this regime becomes gradually larger on increasing N .
The direct measurement of slopes in the scaling region gives τ(N) = 1.086, 1.091
and 1.096 for N = 212, 213 and 214 respectively. A finite-size scaling is very much
suitable with the following scaling form:

P (s,N)Nητ ∝ Fτ (sN
−ζτ ) (3.7)

where the scaling function Fτ (x) ∼ x−τ in the limit of x→ 0 and Fτ (x) approaches
zero very fast for x >> 1. The exponents ητ and ζτ fully characterize the scaling of
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Figure 3.12: The average size of the avalanches 〈s(wc(N), N)〉 right at the poverty
line wc(N) has been plotted with system size N on a log− log scale. The slope of
this curve gives the exponent β = 1.92(2).

P (s,N) in this case. An immediate way to check the validity of this equation is to
attempt a data collapse by plotting P (s,N)Nητ vs. s/N ζτ with trial values of the
scaling exponents. For 1d the values for obtaining the best data collapse are found
to be ητ = 2.44 and ζτ = 2.18 (Fig. 3.11(b)). The life-time distribution exponent
for 1d is therefore τ = ητ/ζτ ≈ 1.12(1).

Next we calculated the average value of avalanche life-times 〈s(wc, N)〉 right at
the critical poverty line. In Fig. 3.12 we plot this quantity with system size N on
a log− log scale. The plot fits excellent to a straight line and its slope gives the
value of the exponent β ≈ 1.92(2) in: 〈s(wc, N)〉 ∼ Nβ. Assuming the distribution
P (s,N) of avalanche sizes holds good up to a cut-off smax ∼ N ζτ one gets a scaling
relation β = ζτ (2− τ) and our estimates of β = 1.92, ζτ = 2.18 and τ = 1.12 satisfy
this relation very closely.

The size of the wo-avalanches are smaller when wo < wc(N) and we have studied
how the average avalanche size grows as the deviation (wc(N) − wo) decreases.
Similar to the BS model we assume 〈s(wo)〉 ∼ [wc−wo]

−γ for N →∞. We measured
the average size 〈s(wo, N)〉 of the wo-avalanches for different system sizes N and
plotted them with wc(N) − wo in Fig. 3.13(a) with wc(N) = whalf

c (N). For all
plots on log− log scale the curves are horizontal as deviation wc(N) − w is very
small. However as the deviation increases the curves become straight with negative
slopes -1.98, -2.15, -2.28 and -2.38 for for N = 28, 210, 212 and 214 respectively. These
values when extrapolated with N−0.208 give γ = 2.67 for N →∞. Again a finite-size
scaling has been possible as shown in Fig. 3.13(b):

〈s(wo, N)〉N−ηγ ∝ Fγ([wc(N)− wo]N
ζγ ) (3.8)

where Fγ(x) is another scaling function. From this data collapse the scaling expo-
nents ηγ = β = 1.92 and ζγ = 0.73 with γ = ηγ/ζγ ≈ 2.63 is obtained.

For every system size N there is a value of wo = winf
c (N) so that when wo is

raised to this value the avalanche size becomes infinite. This implies that if we plot
the data in Fig. 3.13(a) with respect to winf

c (N) − wo then we should be able to
see the divergence of average avalanche size instead of saturation of the avalanche
sizes. We plot this in Fig. 3.13(c) using winf

c (N) = 0.8167, 0.8169, 0.8170, 0.8172
for N = 28, 210, 212 and 214 respectively again on a log− log scale. Each curve is
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Figure 3.13: (Color online) (a) The average value of the avalanche size 〈s(wo, N)〉
has been plotted with deviation wc(N)−wo from the poverty line wc(N). The system
sizes used are N = 28 (black), 210 (blue), 212 (green) and 214 (red). The value of
γ obtained by extrapolation of slopes is 2.67. (b) Finite size scaling analysis of the
data in (a) is shown. The scaling exponents ηγ = β = 1.92 and ζγ = 0.73 gives
γ = ηγ/ζγ ≈ 2.63. (c) Plot of the data in (a) but with wc(N) = winf

c (N). The
slopes for four different system sizes in (a) on extrapolation gives γ = 2.66. We
conclude γ = 2.65(5).

a straight line but with different slopes: -2.31, -2.43, -2.51 and -2.56 respectively.
When these slopes are extrapolated with N−0.31 the extrapolated value for N →∞
is -2.66. Our conclusion for the value of the exponent γ = 2.65(5).

3.4.5 Persistence of Wealth in the Stationary State

The time interval between two successive updates of wealth of an agent is known
as the persistence time tp. Different agents have to wait for different amounts of
times in general. More specifically agents having small amount of wealth have to
wait for very little times. On the other hand potentially rich agents have to wait
long enough times. In the stationary state we measure the persistence times for all
sites of the lattice and use this data to plot their probability distribution. More
precisely we set a clock to each site. Whenever there is a change of wealth at this
site the time is noted and the clock time is reset to zero. At the stationary state we
collect a large number of persistence time data and use these data to calculate the
persistence time distribution.

We assume a power law variation of the persistence time distribution as P (tp) ∼
t−θp in the limit of N →∞. For finite size systems the distributions P (tp, N) vs. tp
are plotted on a log− log scale (not shown) and the direct measurement of slopes
give the θ(N) values for finite size systems. These values are extrapolated as N−0.494

to obtain θ = 1.539 for N → ∞ in 1d. In a similar analysis for a 2d square lattice
of size L using an extrapolation with respect to L−0.565 we get θ = 1.25 for L→∞.

Persistence exponents are also obtained by the finite-size scaling analysis. In
Fig. 3.14(a) we show the scaling plot of P (tp, N)Nηθ vs. tpN

−ζθ with ηθ = 3.41
and ζθ = 2.21. This gives θ = ηθ/ζθ = 1.543 in 1d. Similar scaling analysis in
terms of the system size L in 2d square lattice has been performed with ηθ = 3.49
and ζθ = 2.74 which gives θ = 1.274 (Fig. 3.14(b)). Averaging θ values obtained
from direct measurement and scaling analysis we conclude θ = 1.541(10) in 1d and
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Figure 3.14: (Color online) The probability distribution P (tp, N) of persistence times
tp at the stationary state. (a) The finite-size scaling of the distribution in 1d for
N = 210 (black), 212 (red) and 214 (blue). From the scaling exponents ηθ = 3.41 and
ζθ = 2.21 the persistence exponent θ = ηθ/ζθ ≈ 1.543 is obtained. (b) The finite-
size scaling of the distribution in 2d for L = 28 (black), 29 (red) and 210 (blue).
From the scaling exponents ηθ = 3.49 and ζθ = 2.74 the persistence exponent
θ = ηθ/ζθ ≈ 1.274 is obtained.

Minimal Wealth model BS model Manna model
1d 2d BA graph N -clique 1d 2d 1d 2d

wc 0.8175(2) 0.6887(2) 0.6444(2) 0.6076(2) 0.66702(8) [72] 0.328855(4) [75] 0.89199(5) [76] 0.68333(3) [76]
τ 1.12(1) 1.29(1) 1.50(1) 1.50(1) 1.073(3) [72] 1.245(10) [75] 1.112(6) [77] 1.273(2) [77]
γ 2.65(5) 1.58(5) 1.02(5) 1.00(5) 2.70(1) [75] 1.70(1) [75]
π 2.89(5) 3.94(5) - - 3.23(2) [75]
z 2.77(7)
β 1.92(2) 0.95(2) 0.52(2) 0.50(2) 2 2
θ 1.541(10) 1.262(10) 1.00(1) 1.00(1)

Table 3.1: Values of different exponents of Minimal Wealth model are compared
with those of existing models in the literature.

θ = 1.262(10) in 2d. Estimates of all exponents measured in this chapter have been
quoted in Table 3.1 and are compared with their corresponding values in BS and
Manna model.

3.5 The Maximal Wealth model

Next we studied the Maximal Wealth model where one agent is necessarily the
agent with maximal wealth. The other agent being selected randomly with uniform
probability from the neighbors of the first agent. Random re-shuffling of wealth
takes place in the same way as in the Minimal Wealth model.

In Fig.15(a) we plot again for the Maximal Wealth model the values of wealth
wi of different agents at a certain instant of time in the stationary state with their
positions i along an 1d lattice of size N = 512. In contrast to the similar plot of
the Minimal Wealth model in Fig. 3.1 here an upper cut-off for the wealth has been
visible at whalf

c (512) = 1.3924.
In this case the stationary state wealth distribution P (w,N) takes an opposite
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Figure 3.15: (Color online) Values of wealth wi of different agents in the stationary
state are plotted with their positions i along a 1d lattice for the (a) Maximal Wealth
model, the red line is at whalf

c (512) = 1.3924. (b) mixture of the Minimal Wealth
and Maximal Wealth models with probability p = 1/2, the red lines correspond to
peaks at wc(512) = 0.7559 and at 1.3574.

shape (Fig. 3.16(a)). A critical wealth wc(N) exists here as well. P (w,N) takes
a Gaussian form elevated by a constant term c(N) for w < wc(N), whereas for
w > wc(N) it sharply decreases to zero. The parameters of the Gaussian function
(Eqn. (3.6)) are different for different N and they vary very systematically with
N as: A(N) ≈ 30.48 − 133.35N−0.361, µ(N) ≈ 3.74 − 6.66N−0.85 and σ(N) ≈
1.047 + 0.572N−0.321 and the constant c(N) ≈ 0.031 + 4.265N−0.73.

The critical value of wealth wc(∞) in the asymptotic limit of system sizes has
been estimated by the same method as used for the Minimal Wealth model. The
whalf

c (N) and wslope
c (N) values have been calculated for N = 28, 210, 212 and 214,

extrapolated with N−0.586 and N−0.620 and the asymptotic values are 1.3610 and
1.3608 respectively. We conclude wc(∞) = 1.3609(2) for 1d. A similar analysis
gives wc(∞) = 1.7076(2) for 2d square lattice, 1.8895(2) for the BA graph and
1.9998(2) for the N -clique. It may appear that the Minimal Wealth and Maximal
Wealth models should be symmetric about the average wealth per agent which we
have set at 〈w〉 = 1. We have seen above that this indeed not the case since wc

values are 0.8175 and 1.3609 for the Minimal Wealth and Maximal Wealth models
respectively. The symmetry between these two models are broken by the presence
of a rigid wall at w = 0 which means that negative value of wealth of an agent is
not allowed.

The avalanche size distributions have been studied as well. A finite-size scaling of
these distributions has been done and are plotted in Fig. 3.16(b) using log− log scale
as before for N = 28, 210 and 212. The scaling exponents are ητ = 2.39 and ζτ = 2.10
respectively giving the value of the avalanche size exponent τ = ητ/ζτ ≈ 1.14(1).

Finally we have studied a mixture of the Minimal Wealth and Maximal Wealth
models. At every bipartite trade the first agent with minimal wealth is selected with
probability p or with maximal wealth with probability 1 − p. The second agent is
selected with uniform probability from the neighbors of the first agent. A snapshot of
the individual wealth for p = 1/2 at the stationary state for different agents has been
shown in Fig. 3.15(b). Here the wealth values are restricted within a ‘wealth-band’
with sharp cut-offs at a high and a low end. Consequently the shape of the wealth
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Figure 3.16: (Color online) (a) The wealth distribution P (w,N) vs. w for the Max-
imal Wealth model for N = 28 (black), 210 (red), 212 (green) and for 214 (blue). (b)
Finite-size scaling of the avalanche size distribution P (s,N) at the critical thresh-
old wc(N) for N = 28 (black), 210 (red) and 212 (blue). The scaling exponents are
ητ = 2.39 and ζτ = 2.10 which gives the exponent τ = ητ/ζτ ≈ 1.14(1).
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Figure 3.17: (Color online) (a) Mixture of Minimal Wealth and Maximal Wealth
models with probabilities p and 1−p respectively forN = 29 and for p = 0.02 (black),
0.08 (red), 0.2 (green), 0.4 (blue), 0.6 (magenta) and 0.9 (maroon). (b) Variation of
the ratio r(p) of heights of the right peak and the left peak with probability p.
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distribution P (w, p) has double peaks for all N and we plot the distribution in Fig.
3.17(a) for N = 29. Portion of the distribution between the peaks fits excellent to
elevated Gaussian distributions with different parameter values for different values
of p in the range between 1/2 and 1. On the two sides of this region the distribution
decays to zero very fast. The figure shows the plot of P (w, p) vs. w for p = 0.02,
0.08, 0.2, 0.4, 0.6 and 0.9. In Fig. 3.17(b) we plot the ratio r(p) of the heights of
right peak and the left peak with the probability p.

3.6 Comparison with Other Models

Our model can be compared with the similar models in the literature. (i) In the
PIAV model an agent can have negative value of wealth, i.e., this model allows
an agent to run into debt. In comparison our model has positive values of wealth
for all agents. There is a wall at the zero value of wealth and no agent can have
debt. Consequently we will see in the following that the wealth distributions in
the Minimal and Maximal Wealth versions of the PIAV model are symmetric with
respect to the average money 〈w〉 = 1 where as in our case the wealth distributions
are asymmetric. (ii) We have shown for the first time that the persistence time
distribution in Minimal Wealth model has power law distributions with very non-
trivial exponents in both 1d and 2d. (iii) As an extension of this model we have
studied the Maximal Wealth model where the first agent selected is necessarily the
richest agent. Further we have studied a probabilistic mixture of the Minimal and
Maximal Wealth models. (iv) PIAV model has been claimed to be of the same
universality class as that of Bak-Sneppen model where as precise calculation of
critical exponents of our model shows that our model is very unlikely to be in the
BS universality class.

(i) In the model of Ghosh et al. the cut-off wo in the wealth is continuously tuned
to arrive at the critical poverty line denoted by wc. In comparison the dynamical
process in our model self-organizes the system so that the critical poverty wealth wc

is spontaneously reached. The estimated values of the critical points are close but
distinctly different in two models. (ii) Consequently the Ghosh et al. model is an
example of continuous phase transition where as our model gives a Self-organized
critical state. As a result there is no super-critical phase in our model in comparison
to the model of Ghosh et al. (iii) On the other hand a number of exponents measured
in our model are not measured in Ghosh et al. model, e.g., avalanche size distribution
exponent etc. However the relaxation exponent measured in both models are wide
different, i.e., in 1d, z = 2.77 in our model compared to 1.9 in Ghosh et al.

3.7 Conclusion

Social inequality in terms of economic strengths is ubiquitous for the people of all
countries. Perhaps this inequality acts as the major driving force behind the ad-
vancement of society. Consequently the mechanism that establishes this inequality
in a society is an important issue and attracted the attention of researchers over
the last century. Here we have studied a modified version of the conservative self-
organized extremal model introduced by Pianegonda et. al. which is motivated
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by the wealth distribution in a society. In this model the entire wealth of the so-
ciety is strictly conserved. It evolves by a trade dynamics that takes the society
from equality (or any other initial wealth distribution) to a stationary state where
strong social inequality is present. The dynamics is an infinite sequence of stochas-
tic bipartite tradings where one of the agents has the globally minimal value of
wealth, the other one being selected randomly from the neighbors of the first agent.
Our numerical study reveals that this model is one of the simplest models of Self-
organized Criticality where the stationary state is non-ergodic. This model is very
similar to the self-organized critical Bak-Sneppen model for the ecological evolution
of interacting species. Using numerical simulation we have estimated a number of
critical exponents for this model on an 1d regular lattice, 2d square lattice, the
Barabási - Albert scale-free graph and on the N -clique graph. We present evidences
which suggest that this model does not belong to the universality class of either the
Bak-Sneppen model or the Manna model of Self-organized Criticality. This model
belongs to a new universality class perhaps because of strict conservation of wealth
is maintained in its dynamical rules.



Chapter 4

Disease Spreading Model with
Partial Isolation

4.1 Introduction

An infectious disease spreads from an infected (sick) person to a susceptible (healthy)
person through some kind of contact. For different diseases the nature of contacts
are in general different. For example the infection may spread in physical contact,
by air borne viruses or through some intermediate carrier like mosquitoes or other
insects. In practice different individuals have different number of people in their
contact neighborhood. Thus a closed community with a set of population and a
set of their neighbors constitute a contact graph. With time the infected individ-
uals become cured but other individuals may become infected. Thus the disease
propagates from one set of individuals to another set of individuals and this process
continues. For an individual the infection persists for certain duration of time. For
some diseases an individual recovers after infection but he may remain prone to
further infection. In this case, there may be an endemic state where a non-zero frac-
tion of population remains always infected. For some other diseases one may become
completely immune and cannot have the same disease for a second time [78-80].

In this chapter we present numerical evidence that when infected individuals are
partially isolated i.e., have a limited capacity of spreading infection, the threshold
rate for propagation of the disease to attain an endemic state is enhanced, always
non-zero on any contact graph, including the scale-free networks. In the known mod-
els of disease spreading all infected individuals are assumed to be infinitely strong
in spreading diseases because they can infect all their neighbors. In comparison our
work is likely to be relevant in modeling more realistic situations when each infected
individual has a maximum but finite capacity of spreading.

A well-known model of disease spreading in a community is the susceptible-
infected-susceptible (SIS) model [78]. Community members are assumed to be posi-
tioned at the nodes of an arbitrary graph. An individual can be in only two possible
states: susceptible or infected. The number k of edges meeting at an infected node is
known as the degree of the node and the infection is transmitted along these edges.
In general if a susceptible node has one or more infected neighbors, it gets infected
at a continuously tunable rate β. At the same time an infected node recovers at
a rate γ. Usually SIS model is studied with an effective spreading rate λ = β/γ

49
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choosing γ = 1. This implies that the node is infected only for a unit time and then
recovers to become susceptible in the next time step. In a mean-field analysis the
time evolution is described by the following equations:

dρs
dt

= −βρsρi + γρi,
dρi
dt

= βρsρi − γρi, (4.1)

where ρs and ρi are the susceptible and infected population densities respectively so
that: ρs + ρi = 1. In a discrete time dynamics all infected nodes at time t become
susceptible at time t + 1 where as some of the susceptible nodes in time t become
infected in the next time step. Starting from an arbitrary initial density of infected
nodes the community evolves to a time independent stationary state. We define
‘prevalence’ as the average density of infected individuals ρ(λ) in the stationary state.
The SIS model exhibits a non-equilibrium transition from a completely healthy phase
with ρ(λ) = 0 to a partially infected phase with ρ(λ) > 0 at a critical value λc of
the infection rate [78-80].

In the susceptible-infected-recovered (SIR) model an individual can be in three
possible states: susceptible, infected and recovered [78]. Once infected, an individual
is recovered in the next time step and becomes immune to further infection and
continues in the recovered state for ever after. One usually starts with all susceptible
nodes except one infected node. It is observed how the disease from a single infected
node spreads to a large number of nodes of the system. Here also beyond a certain
critical rate λc the outbreak reaches a finite fraction of the population. Since the
infection spreads along the edges of the contact network, SIR model is equivalent to
the bond percolation where λ is the bond occupation probability. In a mean-field
analysis the time variations of the population densities are governed by

dρs
dt

= −βρiρs,
dρi
dt

= βρiρs − γρi,
dρr
dt

= γρi, (4.2)

where ρi, ρs and ρr are the fractions of the population in the infected, susceptible
and recovered states and ρi + ρs + ρr = 1 [78-80].

The disease spreading process depends on the spreading rate λ as well as the
nodal degrees k. The disease spreads in a branching process. In this case the
branching ratio is the average number of susceptible people who got infected by a
single infected individual. It is known that when the branching ratio is larger than
unity the epidemic persists, otherwise the disease vanishes from the society. When
the average number of contact neighbors is large, spreading is ensured even when
the spreading rate λ is small but 〈k〉λ > 1. In other words the condition for disease
spreading is the spreading rate λ > λc = 1/〈k〉 [81-83].

4.2 Model

We argue that a partial isolation measure adopted by the infected individuals affects
the disease spreading process [84]. An infected person takes precaution and therefore
goes to some kind of isolation to cut-off his contacts from others. However in reality
often such an isolated process is not perfect but only partial. As a result effectively
the number of susceptible people who are still exposed to his infection turns out to
be less, but yet non-zero, than his actual number of susceptible neighbors.



4.2. MODEL 51

1 10 100 1000 10000
t

0

0.05

0.1

0.15

0.2

ρ ι(t
)

Figure 4.1: (Color online) In the stationary state of the SISI model on BA networks
the prevalence does not depend on the densities of the infected nodes at the initial
stage. For N = 214, n = 2, m = 2 and λ = 0.55 the time evolutions of the densities
of the infected nodes ρi(t) against the time t have been plotted for different initial
densities of infected nodes: ρi(0) = 0.05 (black), 0.25 (red), 0.50 (green), 0.75 (blue)
and 0.95 (magenta).

The effect of partial isolation is incorporated in a modified SIS model by intro-
ducing an integer parameter ‘n’ which is a measure of the spreading capacity. We
propose that under partial isolation, an individual’s capacity of spreading disease is
limited up to a maximum number of n neighbors, irrespective of his actual number
of contacts. The capacity n is assumed to be the same for all individuals. Therefore
on an arbitrary graph, disease spreads probabilistically from a node at a rate λ to
only n susceptible neighbors, randomly selected from his k neighbors. Like in an-
nealed disorder, at every time step t, each infected node randomly selects the set of
n susceptible neighbors. We refer this model as the susceptible-infected-susceptible
model with partial isolation (SISI).

More specifically the simulation procedure used in studying the SISI is the fol-
lowing. On an arbitrary graph each node represents an individual, who can be in
two possible states: infected or susceptible. At an arbitrary intermediate time the
microstate of the system is described by specifying the state of each node. The
system evolves from one microstate to another by a synchronous updating proce-
dure. In general each node has few infected and few susceptible neighbors. For
each infected node n neighboring nodes are randomly selected from its subset of
susceptible neighbors and these nodes are marked. In case the total number of sus-
ceptible neighbors is less than n, then all of them are marked. In general a marked
susceptible node may be the neighbor of multiple infected nodes, yet it is marked
only once. Therefore all marked susceptible nodes are on equal footing irrespective
of the number of their infected neighbors. When the marking process is complete
for all nodes, there are only three types of nodes: susceptible and marked nodes,
susceptible and un-marked nodes and infected nodes. All nodes are then updated
synchronously using the following procedure: (i) Each susceptible and marked node
is infected with a probability λ or is left susceptible with probability (1 − λ), (ii)
each susceptible but un-marked node is left susceptible and (iii) each infected node
becomes susceptible with probability one. The following numerical evidence sug-
gests that assigning a fixed capacity n of disease spreading results non-zero critical
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Figure 4.2: Disease spreading model SISI with maximal capacity of spreading n on
BA network of size N = 216 with m links per incoming node. The prevalence ρ(λ, n)
has been plotted with the disease spreading rate λ for different n: (a) n = 2 for m
= 2, 3, 4, 5 (b) n = 3 for m = 3, 4, 5, 6; parameter m increases from right to left.

spreading rates depending on n for both the SIS and SIR models.
Usually real-world networks have strong heterogeneous structures. One way to

characterize these networks is studying the nodal degree distributions. For example
the degree distributions of a large number of networks have power law tails. These
networks are called the scale-free networks (SFN). It is known that the Internet,
World-Wide-Web (WWW), biological networks like protein interaction networks,
social networks like collaboration networks or contact networks of sexually trans-
mitted diseases are the important examples of SFNs [85, 86]. Recently the SIS and
SIR have been studied on different random and correlated graphs. It has been
shown that on SFNs the threshold value λc for the endemic state is very small and
the prevalence vanishes exponentially as the network size increases to infinity [87].

4.3 SISI Model on Barabási-Albert Network

First we studied the SISI model on the Barabási-Albert (BA) network [85]. For
asymptotically large BA networks the degree distribution is a power law: P (k) ∼
k−γ with γ = 3 [85]. However for the networks of finite size N the upper cut-
off of the nodal degrees is known to grow like kmax ∼ Nx with x = 1/2. The
BA networks are constructed using the ‘rich get richer’ principle. Such a network
grows by adding new nodes one by one. A new node gets connected to m distinct
nodes of the existing network with probabilities proportional to their degrees. For
simulation of BA network a simpler version is often useful: A link of the existing
network is randomly selected with uniform probability and one of its two end nodes
is connected with probability 1/2 to the new node [88]. Once the BA network has
been constructed, each node is assigned the status of a susceptible or an infected
individual with probability 1/2. For each infected node n susceptible neighbors are
randomly selected and are marked. Therefore one susceptible node may be marked
by more than one infected node. However we ignore the multiple markings of a node,
i.e., a node can be either marked or unmarked. When marking is complete for all
nodes of the graph, a synchronous process runs through the three steps mentioned
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Figure 4.3: Plot of the prevalence ρ(λ, n) with the inverse deviation [λ − λc(n)]−1
from the critical point λc for different maximal capacities n. Calculations are done on
a BA network of size N = 218 where every new node is connected tom distinct nodes
of the existing network. Symbols used for different (n,m) are: (2,2) (circle), (3,3)
(square) and (4,4) (triangle) using the λc(n) values 0.5, 0.3383 and 0.25 respectively.

above to update the status of every node to obtain the microstate in the next time
step.

We first exhibit that in the stationary state the density of infected nodes ρi(t)
fluctuates with time but its average assumes a fixed time independent value which
does not depend on the initial density of infected nodes. We simulated the SISI
model on the BA network starting with different densities of initially infected nodes,
namely ρi(0) = 0.05, 0.25, 0.50, 0.75 and 0.95. The density of infected nodes against
time plots have been shown in Fig. 4.1 for these five initial densities for N = 214,
n = 2, m = 2 and λ = 0.55. It is seen that beyond a certain relaxation time of
the order of 1000 the average values of prevalence are nearly the same for all ρi(0).
We conclude that the stationary state is independent of the densities of the infected
nodes at the initial stage.

In Fig. 4.2 we plot the prevalence ρ(λ, n) for BA networks of size N = 216.
Fig. 4.2(a) shows the plots for n = 2 and m = 2, 3, 4 and 5. As m increases the
link density in the BA network increases and the curves gradually converge to a m
independent curve. The prevalence monotonically decreases with decreasing λ and
vanishes as λ→ 0.5. Similarly we plot the prevalence against the infection rate for
the capacity values n = 3 with m = 3, 4, 5, 6 in Fig. 4.2(b). These plots are quite
similar, only difference being they approach to different values of λc(n) for different
n.

Approach to the threshold value is found to be exponential like ρ(λ, n)∝ exp(−C/[λ−
λc(n)]). This is seen in Fig. 4.3 where we have plotted ρ(λ, n) against [λ− λc(n)]−1
on a semi-log scale for N = 218 which fitted nicely to a straight line and we esti-
mated in Fig. 4.3 that λc(2) = 0.5, λc(3) = 0.3383 and λc(4) = 0.25. Therefore our
numerical results indicates that for SISI on BA networks the critical threshold for
the infection rate λc(n) ≈ 1/n.

The SISI model can be generalized in the following way. A susceptible node having
multiple infected neighbors may have higher probabilities to become infected. We
have further studied this modified model on BA network when a susceptible node
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Figure 4.4: (Color online) (a) Probability distribution D(s) for the number of times
s a susceptible site can be marked in gSISI model on BA network. Using n = 2 and
m = 2 the system size N has been varied from 210 to 218, increased by a factor of 4
(from left to right). For large values of N the variation approaches a power law with
the exponent ≈ 4.8 followed by a hump at the tail. (b) Plot of the prevalence ρ(λ, 2)
against the infection rate λ for the SISI (lower curves) and for the gSISI (upper
curves). The colors black, red and blue in both sets correspond to N = 212, 214 and
216 respectively.

is marked s times by its multiple infected neighbors. It is assumed that such a
node has the probability proportional to s to become infected. This model will be
referred as the generalized SISI or briefly gSISI. To get an idea how frequently such
nodes occur in the stationary state we first calculate the probability distribution
D(s) that a node is marked s times. In Fig. 4.4(a) we plot the D(s) against s on
a double logarithmic scale for five different system sizes. For the large system sizes
the variation approaches a power law with an exponent value ≈ 4.8 followed by a
hump at the tail. It is also noted that D(1) ≈ 0.84 and the rest of the multiply
marked nodes with s > 1 values have the total probability ≈ 0.16. This 16 percent
multiply marked susceptible nodes makes the difference between the SISI and the
gSISI. In Fig. 4.4(b) we present the prevalence ρ(λ, 2) against λ for BA networks
of size N = 212, 214 and 216 with n = 2, m = 2 and observe that the prevalence
for gSISI is always larger than that of SISI for the whole range of λ > 1/2. We
understand this in the following way. Since λ > 1/2 the 16% nodes marked s > 1
times are always infected. This enhances the prevalence in gSISI compared to that
in SISI. Further we observe numerically that variation of prevalence for gSISI has
little dependence on the network size N . We plotted ρ(λ, 2) against λ curve for
N = 212, 214 and 216. They nearly overlapped and approach the zero prevalence
at λc(N) = 0.516, 0.509 and 0.510 respectively. This is to be compared with SISI
whose corresponding values of λc(N) are 0.555, 0.540 and 0.535 respectively. So we
conclude that λc(2) for the gSISI approaches the asymptotic value of 1/2 faster and
perhaps has less finite size dependence.
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Figure 4.5: SISI model studied on the largest component of the Random graphs of
different average degrees 〈k〉. The prevalence ρ(λ, n) at the steady state has been
plotted for two different maximal spreading capacities n: (a) For N = 216, n = 2,
〈k〉 = 2 to 8 and (b) For N = 216, n = 3, 〈k〉 = 2 to 6; the parameter 〈k〉 increases
from right to left.

4.4 SISI Model on Random Graphs

The SISI model has also been studied on Random Graphs (RG) [3]. To generate a
RG one starts with N nodes with each node being a component of size unity and no
links. At an arbitrary intermediate stage a pair of nodes is selected randomly with
uniform probability and are linked if they are not connected already. As more and
more links are dropped sizes of different components increase. As the link density p
= (number of links)/N is increased, different components merge among themselves
and thus larger components are formed. The Order Parameter (OP) is measured
by the fractional size of the largest component. It is known that at the critical link
density of pc = 1/2 the OP increases very rapidly indicating a continuous transition.
At pc correlations appear in the system and the system makes a transition from a
phase of local connectivity to a phase of global connectivity. We studied SISI on
RGs using average degree 〈k〉 = 2p as a parameter. After generating a Random
Graph with a pre-assigned value of 〈k〉 we label different components by the burning
method. We study SISI model only on the largest connected component.

As before, initially the nodes are randomly assigned the susceptible and infected
status with probability 1/2. The dynamics is then switched on with a pre-assigned
value of the infection rate λ. A specific value of the maximal capacity n of spread-
ing is assigned. After some initial relaxation period the time variation of prevalence
becomes stationary. At this stage the prevalence has been averaged over a large
number of time steps. This is repeated for different initial Random Graph configu-
rations, different values of average degrees 〈k〉 and n. The average prevalence ρ(λ)
is then plotted in Fig. 4.5(a) and Fig. 4.5(b) for n = 2 and 3 respectively. Here also
the critical infection rate λc(n, 〈k〉) tends to 1/n as 〈k〉 increases.
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Figure 4.6: (a) SIRI model on the BA network of size N = 214. Plot of the fraction
fr(λ, 2,m) of nodes that recovered in the SIRI model of disease spreading on BA
network. The maximal capacity parameter used is n = 2 and m values are increased
from 2 to 7 from right to left. (b) Plot of the same for (n,m) = (2, 2) but for
N = 212, 214, 216 and 218, N increases from top to bottom. Inset shows the plot of
inverse of the largest slope s(λ, 2) of these four curves with λ which extrapolates to
λc(2, 2) = 0.585.

4.5 SIRI Model on Barabási-Albert Network

Next we study the Susceptible-Infected-Recovered model with partial Isolation (SIRI)
with limited capacity of spreading. For example, on a BA network of size N ini-
tially all nodes are made susceptible and then a seed node is randomly selected and
infected at time t = 0, the disease spreads from this node. For each BA network
the spreading process is simulated from 100 to 800 such initial seeds. The data is
averaged over 100 independent BA networks. At an intermediate time t, an infected
node i with degree ki has some infected and some susceptible neighbors in general.
As before a subset of n nodes are then randomly selected from the set of susceptible
neighbors and marked. If n is larger than the number of susceptible neighbors, all
of them are marked. When the marking is complete for all infected sites the system
is updated as: (i) All susceptible and marked nodes are infected with probability λ,
left susceptible with probability 1 − λ, (ii) all susceptible and unmarked nodes are
left susceptible and (iii) all infected nodes are recovered with probability one. The
recovered nodes remain recovered ever after and never become susceptible again.
Nodes which got infected at time t become the source of infection at time t+ 1 and
this process continues. We first fix the spreading capacity n of the infected indi-
viduals and then increase the average number of links m that come out of a newly
added node of the BA network. The whole simulation is repeated for n = 2, 3 and
4. The data for n = 2 only is shown in Fig. 4.6(a). Here we plot fr(λ, 2,m) versus
λ. Here fr is the fraction of nodes which get infected and subsequently recovered till
the system is completely disease free. The size of the BA network used is N = 214

and the parameter m is varied from 2 to 7. It is observed that for all curves with
m > 2 the critical threshold λc(2,m) ≈ 0.5 but not for the case (n,m) = (2, 2). To
study this case in more detail we used four different network sizes N = 212, 214, 216

and 218 and plotted fr(λ, 2, 2) against λ on a log-lin scale in Fig. 4.6(b). The
slope of the plot gradually becomes larger as the system size increased from top to
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Figure 4.7: SIRI model on the square lattice. (a) The fraction fr(λ, n) of the
recovered sites has been plotted with the disease spreading rate λ for the capacity
of spreading n = 2, 3 and 4 (from right to left). (b) Plot of the variation of λc(2, L)
against L−1.25 which extrapolates to λc(2,∞) = 0.657 as L→∞.

bottom. We calculated the maximum of the slope s(λ, 2) = d log fr(λ, 2, 2)/dλ|max

which is expected to diverge as N → ∞. Therefore we plot inverse of s(λ, 2) with
λ in the inset, and extrapolate to s(λ, 2)→∞ which intersects the λ axis at 0.585.
We conclude that the particular case of SIRI with maximal capacity n = 2 on BA
networks with m = 2 has a different epidemic threshold λc = 0.585. Further we
repeated these calculations for n = 3 and 4 on BA networks of m = n and higher.
The threshold values obtained are approximately 1/n for all m.

4.6 SIRI Model on Square Lattice

SIRI model on square lattice is also found to be interesting. In Fig. 4.7(a) the
fraction of recovered sites fr(λ, n) is plotted against λ for the capacities n = 2, 3
and 4 for the square lattices of size L = 128. It is observed that the variation for
n = 2 is much different from those of n = 3 and 4. The n = 4 case is exactly the
ordinary bond percolation case and its critical threshold is found to be very close
to 0.5 [27]; a similar value is obtained for n = 3 as well. However the threshold
for n = 2 is found to be approximately 0.66 which is much different from 0.5. To
find out the precise value of λc(2,∞) we studied larger lattice sizes 64, 128, 256
and 512. To measure the critical disease spreading threshold in the thermodynamic
limit the λc(2, L) values are extrapolated with L−1/ν in Fig. 4.7(b) to its infinite
size threshold value λc(2,∞) = 0.657 as:

λc(2, L) = λc(2,∞) + AL−1/ν (4.3)

where ν is found to be 0.80(2).
We plot in Fig. 4.8(a) only fr(λ, 2) for these system sizes and observe that as

the system size increases the curves become sharper. Numerically the coordinates
λc(2, L), fr(λc(2, L), 2) of the points with largest slopes are estimated and a finite
size scaling is done around these points using the following scaling form as shown in
Fig. 4.8(b).

fr(λ, 2)L
0.18 ∼ G{[λ− λc(2, L)]L0.66}. (4.4)
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Figure 4.8: (Color online) SIRI model on the square lattice. (a) Plot of fr(λ, 2)
for n = 2 only but for three different system sizes L = 128 (red), 256 (green) and
512 (blue), the slope increases with the system size. (b) For each of these curves
the points where the slope is largest have been identified and a finite size scaling
described by Eqn. (4.4) has been done around these points in (b).

The universal scaling function G(x) should have the L independent form xτ in the
thermodynamic limit of L→∞. For such a relation to hold good one should have

L−0.18+0.66τ ∼ 1 (4.5)

which implies τ = 0.18/0.66 ≈ 0.27. This value of τ is quite consistent with our
directly measured numerical value of τ = 0.30 from a replot of the data in Fig.
4.8(b) on a log− log scale.

4.7 Summary

It has been observed already in the literature that the critical rate of disease spread-
ing tends to vanish on the scale-free graphs as the system size is increased [87]. In
this article we have looked this problem in further detail. We introduced a param-
eter n which measures the capacity of an infected individual to spread the disease
i.e., the maximum number of susceptible people an infected individual possibly can
infect. When an infected individual becomes susceptible again in the next time step,
we call this model as SISI. SISI model with different values of n have been studied
on the BA network for different values of m, the number of links with which a new
node is connected. For a given n the critical infection rates λc(m,n) gradually ap-
proaches λc(n) as m increases. Using extensive numerical calculations we find λc(n)
is non-zero for all n and approaches to zero as 1/n.

The SISI model has also been studied on the Random Graphs. Since RGs have
many components, we have sorted out the giant component at the critical link
density and studied the SISI on the giant component. Here also different nodes
have different degrees k with the average 〈k〉 = 1. Like the SISI on BA network
we have imposed a maximal cut-off n of the number of susceptible neighbors an
infected node can possibly infect. Our numerical results show that here also the
critical infection rate λc(n, 〈k〉) tends to 1/n as 〈k〉 increases.
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The SIRI version has been studied on the square lattice. Here we studied the
three possible values of the maximal capacity n = 2, 3 and 4. For n = 4 it is the
ordinary SIR model on the square lattice. For n = 3 we see that the fraction of
recovered sites fr(λ, 3) against λ curve almost coincides with that for the fr(λ, 4)
against λ. However the same plot for fr(λ, 2) is quite different (Fig. 4.7) and we
have obtained λc(2,∞) = 0.657 after finite size extrapolation. The corresponding
correlation length exponent ν is found to be 0.80(2) which is much different from
the exact value of 4/3 in the case of bond percolation.

4.8 Conclusion

To conclude we have studied SIS and SIR type disease spreading model where each
infected individual has a finite maximal capacity n of infection spreading. Numerical
study of this model on a number of different substrate graphs indicate that the
critical infection rate λc(n) does depend on n and is always non-zero. A similar
modification of the SIR model on square lattice indicates that for n = 2, may
belong to a new universality class compared to the ordinary bond percolation [27].
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Chapter 5

Space-filling Percolation

5.1 Introduction

We have already described in the introductory chapter that the phenomenon of
Percolation deals with the appearance of long range correlations in a disordered
system. Random occupation of space by some elementary objects in a system,
extended over a finite region of space, gives rise to a correlation length. This length
diverges as the density of the objects, in other words the probability of occupation,
increases to certain critical density. In this chapter we have studied a percolation
problem, whose building units are two dimensional growing circular disks. These
disks come in contact with one another and in this way form an assembly of touching
disks which we look upon as a contact network. Apart from studying the well known
features of this percolation problem we have studied the network characteristics of
the contact network of the assembly of touching disks.

After its introduction by Hammersley [23] a number of different variations of the
percolation problem have been introduced and studied in the literature. Almost
all of these models have exhibited continuous transitions across their percolation
transition points. Only once exception that shows a discontinuous transition is
the Bootstrap Percolation [89] modeling the competition between exchange and
crystal field interaction in some magnetic materials. In this percolation problem,
depending on the lattice structure, it may happen that culling of even a single spin
evacuates a globally connected system in a recursive process. While this was the
background picture, only recently a new concept of “Explosive Percolation” (EP)
has been introduced which suggested that the nature of transition may indeed be
discontinuous in some percolation models [90] as per some general prescription. This
immediately implies that the associated Order Parameter, estimated by the size of
the largest cluster, should undergo a discontinuous change at the point of transition.
In the context of percolation theory such a discontinuous transition can happen only
when the largest cluster merges with the maximal of the second largest cluster, which
also has a macroscopic size [91, 92].

The original model of Explosive Percolation had been studied on complete graphs
[90], later different versions of EP have been studied on the square lattices [93, 94],
on scale-free networks [95,96] and also for real-world networks [97]. In most of these
cases, on the basis of numerical results, it has been claimed that the sudden jumps
in their Order Parameters are indeed the signatures of the discontinuous transitions.

61
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However, recently it has been shown that, although this class of EP models exhibit
very sharp changes in their Order Parameters for finite size systems and appear to
exhibit discontinuous transitions, they actually have continuous transitions in the
asymptotic limit of large system sizes [98].

Here, we propose and study a variant of the Continuum Percolation (CP) model
of growing circular two-dimensional disks that finally led us to arrive at a similar
conclusion, i.e., the proposed model exhibited a similar sharp but continuous transi-
tion [99]. Briefly, here we study the percolation problem in an assembly of growing
circular disks. These disks are released one at a time with their centers located at
random positions in the uncovered region, the ‘uncovered region’ being the space
which is not covered by any of the disks. These disks grow at a uniform rate so that
at any arbitrary intermediate stage different disks have different radii. In general,
a slight overlap among them is allowed when a disk grows to overlap with another
one for the first time. This mutual overlap ensures that the global connectivity is
achieved at a certain density of disks. In the long time the pattern of disks cover
the entire space. We are interested in the study of percolation properties of this
space-filling pattern which, to our knowledge, has not been studied yet.

Various models of space-filling patterns have been studied in the literature char-
acterized by their fractal dimensions df . In the Apollonian gasket, disks are placed
iteratively in the curvilinear triangular spaces between the sets of three mutually
touching disks. Consequently the area of the uncovered space gradually vanishes
and has the fractal dimension df = 1.305686729(10) [100]. In Space-filling bearing
patterns a region of two dimensional space is covered by an infinite set of mutu-
ally touching disks which can rotate without slipping with a fixed peripheral speed.
Different patterns have different fractal dimensions which assume values between
1.3057 and 1.4321 [101]. Due to their deterministic algorithms the global connec-
tivity of these patterns is guaranteed. On the other hand, in one model of random
space-filling pattern of touching disks, such a global connectivity is not ensured.
Here the nucleation centers of the disks are selected at random locations in the un-
covered region one after another. After introduction when a disk grows all other
disks remain frozen. Such a disk grows till it gets in contact with another disk
for the first time when it stops. Such a pattern has the fractal dimension df ≈
1.64 [102]. Recently space-filling patterns in three dimensional random bearings
have been studied in [103]. All these patterns, in the limit of infinite number of
generations, are space-filling. It is known that, while this limit is being taken, the
dust of remaining uncovered pore spaces form a Fractal set. The fractal dimension
df can be estimated following [104].

5.2 The Model

The pattern of circular disks is generated within a unit square box placed on the
x − y plane. The radii of all disks grow uniformly at a continuously tunable rate
δ. To generate a pattern, a specific value of δ is assigned for all disks. The time t
is a discrete integer variable that counts the number of disks released. Therefore at
time t the pattern has exactly t disks of many different radii. Initially the square
box is completely empty. Then at each time step a new disk with zero radius is
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(a) (b)

Figure 5.1: (Color online) Top four largest clusters of the disk patterns (with
δ = 0.001) right before (a) and after (b) the maximal jump in the largest clus-
ter. Different clusters have been shown by circles filled using different colors and
rest of the circles are kept unfilled. (a) At time t = 1973 the number of disks in the
top four large clusters are 1167 (Red); 667 (Cyan); 57 (Green); 16 (Magenta), (b)
and at time t = 1974 they are 1836 (Red); 57 (Cyan); 16 (Green); 13 (Magenta).

introduced. Within the square box the assembly of disks cover a region of space
which is called the ‘covered region’, the remaining space being the uncovered region.
While growing, once a disk overlaps with another disk, it stops immediately and
does not grow any further. Such a disk is called a ‘frozen’ disk.

At any arbitrary intermediate time step the following activities take place: (i)
A point with coordinates {xi, yi} is randomly selected with uniform probability
anywhere within the uncovered region. More specifically a pair of coordinates
(xi, yi), 0 ≤ xi, yi < 1, with uniform probabilities is selected. If it represents a point
within the covered region, it is rejected and another trial is made. This process
continues until a random point within the uncovered region is reached. A circular
disk of radius δ is placed with its center fixed at this point. (ii) Simultaneously,
the radii of all other non-frozen disks are also increased synchronously by the same
amount δ. Every growing disk is checked to see if it has overlapped with any other
disk; if it has, its growth is stopped and it is declared to be a frozen disk.

Gradually, the space within the square box is increasingly covered by the disks
and therefore the amount of uncovered area decreases with time. We define the
control variable p as the sum of the areas of all disks. It may be noted that p is
slightly larger than the actual “area coverage” since the overlapped areas are doubly
counted in the total sum of disk areas. However it has been observed that the total
overlap area tends to vanish in the limit of δ → 0 and we refer to p as the area
coverage in the following discussion.

In a particular run, the simulation is stopped only when the area coverage p
reaches a pre-assigned value or some pre-defined condition becomes valid. For ex-
ample, to reach the percolation point, the run is terminated only when a global
connectivity appears through the overlapping disks from the top to the bottom for
the first time. If one continued further, a stage would come when the different pieces
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Figure 5.2: (Color online) The Order Parameter C(p, δ) has been plotted against
the area coverage p for growth rates δ = 0.002 (black), 0.0008 (red), 0.0002 (green),
0.00004 (blue) and 0.00001 (magenta); the value of δ decreases from the left to the
right.

of uncovered regions would be so tiny that any newly introduced disk would freeze
immediately at the first time step. This would be the natural exit point of the
simulation. However in most cases of our calculation simulations were run up to the
percolation point.

We are interested in studying the percolation process of this growth model. Multi-
ple overlapping disks form different clusters. Discs of a specific cluster are connected
among themselves through overlaps. The size s of a cluster is determined by the
sum of the areas of all disks of the cluster. It has been observed, that in an arbi-
trary pattern near the percolation point, typically there are two large clusters. For
example in Fig. 5.1(a) we exhibit a typical disk pattern just before the percolation
point at time t = 1973 grown at a rate δ = 0.001. The four top largest clusters
are shown by disks, filled using different colors. Right at the next time step t =
1974 two small disks connect the top two largest clusters so that the size of the
largest cluster jumps from 0.439 to 0.747 (Fig. 5.1(b)). This behavior is typical of
the percolation process studied here. Prior to the percolation point the largest and
second largest clusters have a tendency to compete and grow simultaneously while
maintaining their comparable sizes. We define the percolation point to be the time
when the Order Parameter jumps by a maximum amount in a single time step. This
happens only when the largest cluster merges with the maximal of the second largest
cluster. In the following we present simulation results exhibiting this behavior.

Looking at the structures of different clusters in Fig. 5.1, it may be possible to
understand qualitatively the reason behind the observed discontinuous jump in the
size of the largest cluster. The main difference between the ordinary percolation
problem and our model is, the disks here are not static objects, they actually grow
uniformly till they overlap with other disks. When two large clusters are close to each
other, there are small vacant regions at the surface of these clusters which separate
them, but there are many more small vacant regions within the bulk of the clusters.
Since new disks are dropped in the vacant regions with uniform probabilities it is
much more likely that a new disk would start growing within the bulk. When such
a disk grows, it would be a member of this particular cluster with probability one
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Figure 5.3: (Color online) Variation of the sizes of the largest (black) cluster sαm
and the second largest (red) cluster sα2m with the area coverage p for a single run
and for δ = 0.0001. While sαm increases monotonically, sα2m increases to a maximum
and then drops to a small value when the second largest cluster merges with the
largest cluster. This corresponds to the maximal jump in the largest cluster and is
identified as the percolation point for the α-th run.

since these vacant spaces are surrounded by disks of the same cluster. In this way,
the vacant regions inside a cluster gradually tend to fill up and the cluster tends to
increase its size (the area covered by it) by becoming more and more compact in
the bulk, and in the limit of the growth rate δ → 0 and pc(δ)→ 1 the entire pattern
becomes compact. Since the bulk growth rate is faster than the surface growth, two
neighboring clusters take more time to merge, but when they merge they already
become nearly compact and macroscopic in their sizes. We argue that qualitatively
this is the reason that the largest cluster has a macroscopic jump in its size when it
merges with the second largest cluster, and thus the possibility of a discontinuous
transition arises.

Given a specific growth rate δ one generates the disk assembly until the percola-
tion point. At this stage the distribution n(r, δ) of radii r of the disks in the pattern
is defined. Similarly, the total number of such disks in the subset whose radii are
at least r, is denoted by N(r, δ); the total perimeter of all disks in the subset is
denoted by P (r, δ) and the total remaining uncovered area external to all disks in
the subset is denoted by A(r, δ). It is assumed that at the percolation point, in the
limit of r → 0 all these quantities vary as some powers of r as follows [104]:

n(r, δ) = Σri=r1 ∼ r−(df+1)

N(r, δ) = Σri≥r1 ∼ r−df

P (r, δ) = 2πΣri≥rri ∼ r1−df

A(r, δ) = 1− πΣri≥rr
2
i ∼ r2−df (5.1)

In each case, the summation is taken over all disks whose radii are larger than r.
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Figure 5.4: The deviation 1−pc(δ) of the percolation threshold from unity has been
plotted with the growth rate δ on a log− log scale. It is observed that as δ → 0 the
deviation vanishes as a power of δ as: 1− pc(δ) ∼ δ0.133.

5.3 The results

Let sm(p, δ) denote the size (i.e., the maximal covered area) of the largest cluster.
Then the Order Parameter C(p, δ) of the growth process is determined by the average
size of the largest cluster of the pattern for an area coverage p,

C(p, δ) = 〈sm(p, δ)〉 (5.2)

the average being taken over a large number of uncorrelated growth processes. Since
no checking of the global connectivity is required in this part of the simulation, we
have used the periodic boundary condition along both the x and y axes. In Fig.
5.2 we plotted C(p, δ) versus p for five different values of the growth rate δ. It has
been observed that for every plot around a specific value of p = pc(δ) the growth of
the Order Parameter is very sharp. This happens because for a typical run α the
maximal jump in sαm(p, δ) takes place at pαc .

A closer look into the growth process reveals that this maximal jump in the
largest cluster occurs only when the maximum of the second largest cluster merges
with the largest cluster. This has been exhibited explicitly in Fig. 5.3 where we plot
the sizes of the largest cluster sαm and that of the second largest cluster sα2m with the
area coverage p for a single run α. While sαm grows monotonically, the growth of sα2m
is not so because it reaches a maximum and then falls to a much lower value. We
assume that always the smaller cluster merges with the larger cluster. Therefore,
when sα2m merges with sαm it is the third largest cluster sα3m that becomes the second
largest cluster sα2m. This may happen a few times and we mark that particular value
of p = pαc where the maximal jump in sαm takes place.

We define pαc (δ) as the percolation threshold of the α-th run [92]. This value
is then averaged over a large number of un-correlated runs and the percolation
threshold pc(δ) is defined as:

pc(δ) = 〈pαc (δ)〉. (5.3)

It may be observed in Fig. 5.2 that the values of percolation thresholds pc(δ) are
gradually shifting towards unity as δ → 0. To see this approach quantitatively, we
plotted 1 − pc(δ) against δ on a log− log scale in Fig. 5.4. For small values of δ
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Figure 5.5: How the average value of the maximal jump in the Order Parameter
∆mC(δ) approaches to ∆mC(0) has been shown. After some initial curvature the
plot fits to a straight line as δ → 0. This implies that Eqn. (5.7) indeed holds good
with ∆mC(0) = 0.16 and µ = 0.274(5).

the data points indeed fit nicely to a straight line with slope 0.133(5). Therefore we
may write that as δ → 0,

1− pc(δ) ∼ δ0.133. (5.4)

This implies that in the limit of δ → 0 the area coverage at the percolation point
becomes unity. In other words when the growth rate is infinitely slow, global con-
nectivity appears for the first time when the entire space is covered by the disks and
this limiting pattern is therefore space-filling. We therefore call this problem “space-
filling percolation”. The percolation threshold has also been determined using the
usual definition, i.e., when the global connectivity appears for the first time in the
system. In this case, the periodic boundary condition along the x-axis and open
boundary condition along the y-axis have been used. For a specific run, as more
and more disks are released, we keep track as to whether connectivity between the
top and the bottom boundaries of the unit square box through the system of over-
lapping disks has appeared. When such a connectivity appears for the first time, we
refer to the corresponding pattern of disks as the percolation configuration and use
the total area coverage as the second definition of the percolation threshold for this
particular run. As before, an average of these threshold values for a large number
of independent runs gives us the value of pc(δ). It has been observed that the per-
colation thresholds measured using the two methods differ by small amounts, e.g.,
0.039 and 0.019 for δ = 0.001 and 0.0001 respectively and this difference gradually
diminishes as δ → 0.

Right at the percolation threshold pαc (δ) of the α-th run the disk pattern has at
least one or, may have even more than one disk which have the largest radius rαm(δ).
The averaged radius 〈rm(δ)〉 of the largest disk, averaged over many independent
runs, decreases as the growth rate δ decreases. Numerically, a power law form asso-
ciated with a logarithmic correction has been observed to be the best representation
of this variation:

〈rm(δ)〉 ∼ {δ log(1/δ)}0.331. (5.5)

The logarithmic correction in Eqn. (5.5) is supported by a detailed numerical anal-
ysis. A plot of 〈rm(δ)〉 vs. δ on a log− log scale (not shown here) exhibits slow but
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Figure 5.6: (Color online) (a) The quantity 1 − 〈p1/2〉 grows as 0.556δ0.131 and
1− 〈p1/10〉 fits very well to the form 0.556δ0.131 + 3.00δ0.523. (b) Across the window
∆p = p1/2−p1/10 the Order Parameter C(p, δ) jumps from 1/10 to 1/2. The average
size of this window has been plotted with δ on log− log scale and is observed to
vanish as 2.45δ0.50 as δ → 0.

systematic increase of the local slopes as δ → 0. On the other hand, plotting the
same data of 〈rm(δ)〉 against δ ln(1/δ) gives all values of local slopes very close to 1/3
and no systematic variation is observed. We therefore conclude that the presence of
logarithmic correction as in Eqn. (5.5) is a better possibility.

In a similar way, the average radius 〈r(δ)〉 of all disks has been calculated in
the following way. For a particular percolation configuration we first calculate the
arithmetic mean of the radii of all disks and then average this quantity over a large
number of configurations. A power law dependence of 〈r(δ)〉 on δ has been observed.

〈r(δ)〉 ∼ δ0.666. (5.6)

It may be noted that, though 〈r(δ)〉 < 〈rm(δ)〉, the exponent of the former is larger,
since as δ → 0 the value of 〈r(δ)〉 decreases much faster than 〈rm(δ)〉. The errors in
the exponents are of the order of 0.005.

Let us denote that the maximal jump in the Order Parameter by ∆mC(δ). This
is the average of the maximal jumps in the size of the largest clusters over a large
number of independent runs, i.e., ∆mC(δ) = 〈∆msm(p, δ)〉. In Fig. 5.5 we plot
∆mC(δ) − ∆mC(0) with δ on a log− log scale. Since ∆mC(0) cannot be estimated
directly we tried with different trial values of ∆mC(0) to make the plot which fits
best to a straight line. Though there is an initial curvature for large values of δ, the
latter points obtained as δ → 0 fit nicely to a straight line. This implies that the
variation can be termed as a power law like:

∆mC(δ) = ∆mC(0) + Aδµ (5.7)

with ∆mC(0) = 0.16, A = 0.15 and µ = 0.274(5). This relation can be interpreted
that even in the limit of δ → 0 the average maximal jump in the Order Parameter
i.e., the area coverage of the largest cluster, is a finite fraction of the entire area
of the disk pattern. Therefore this is also another signature of the discontinuous
percolation transition in our model.

The rapidity with which the Order Parameter increases in Fig. 5.2 at the percola-
tion threshold can also be quantified by measuring the width of the window around
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Figure 5.7: (Color online) Display of the binned data for the cluster size distribution
D(S) measured by the number of disks S in a cluster. From the slopes in the
intermediate regime we obtained τ = 2.16, 2.13, 2.14 and 2.13 respectively for growth
rates δ = 0.002 (black), 0.001 (red), 0.0005 (green) and 0.00025 (blue), δ decreases
from left to right. The intermediate power law regime gets elongated as δ decreases
and we conclude a value of the associated exponent τ = 2.14(2).

the percolation threshold following the method used in [90]. For a single run, we
define p1/10 as the minimum value of the area coverage p for which C > 1/10. Sim-
ilarly p1/2 is the minimum value of p for which C > 1/2. The difference in these
two area coverages p1/2− p1/10 is the size of the window through which a 40 percent
jump in the Order Parameter takes place. Averaging over a large number of uncor-
related runs we estimated 〈p1/10〉, 〈p1/2〉 and 〈p1/2−p1/10〉. In Fig. 5.6(a) we plotted
1−〈p1/10〉 and 1−〈p1/2〉 using a log− log scale. It is observed that 1−〈p1/2〉 fits very
well to a nice straight line over the entire range of δ implying a power law variation
0.556δ0.131; where as 1−〈p1/10〉 fits quite well to the form 0.556δ0.131 +3.00δ0.523. In
Fig. 5.6(b) we plotted 〈p1/2 − p1/10〉 against δ. Here also, apart from some initial
curvature for large δ the curve fits to a power law

〈p1/2 − p1/10〉 = 2.45δ0.50. (5.8)

Therefore as δ → 0 a 40 percent increase in the Order Parameter requires a van-
ishingly small change in the area coverage. This is again another evidence that the
percolation transition in this model is likely to be a discontinuous transition. The
error in the exponent is of the order of 0.02.

The percolation transition in our model is analyzed by yet another method, this
time studying the cluster size distribution at the percolation point. For this study
we defined the cluster size S in a different way, this time it is the number of disks
belonging to a specific cluster. In Fig. 5.7 we have presented the binned data for the
probability distributions of the cluster sizes for four different values of δ. The cluster
size distribution data have been collected only when the global connectivity appears
for the first time. All four D(S, δ) vs. S plots on the log - log scale have similar
nature. After some initial slow variation, the logD(S, δ) decreases linearly with log S
in the intermediate power law regime. Finally at the tail of the distribution there
is a hump, meaning an enhanced probability for the large clusters which connects
the two ends of the system. It is assumed and which seems to be very likely that as
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Figure 5.8: (Color online) The distribution n(r, δ) of the number of disks of radii
r, the total number of disks N(r, δ), the total perimeter P (r, δ) and the remaining
uncovered area A(r, δ) for disk patterns grown at a rate δ = 0.000125. The slopes
of each curves gives an estimate of the fractal dimension df and an average value of
df = 1.42(10) has been obtained.

δ decreases the position of the hump shifts systematically to large values of S and
therefore in the limit of δ → 0 the entire intermediate regime would fit to a power
law of the form: D(S) ∼ S−τ . We conclude an average value of τ = 2.14(10) which
is to be compared with τ = 187/91 for ordinary percolation [27]. In the context
of percolation theory, it is well known that a power law distribution of the cluster
sizes is a signature of a continuous percolation transition. Therefore, the power
law distribution of the cluster sizes obtained for our model also can be interpreted
as an indication of a possible continuous transition, but this interpretation is in
contradiction to the discontinuous transition indicated by the Eqns. (5.7) and (5.8).

Here we recall that the original model of Explosive Percolation, which goes by
the name of ‘Achlioptas Process’ [90] has a similar story. For this model, most of
the numerical results indicated that the associated percolation transition is discon-
tinuous. However, recently Riordan and Warnke have rigorously proved that a class
of Explosive Percolation models defined on complete graphs which use Achlioptas
type processes are in fact continuous in the asymptotic limit of large size graphs [98].
While saying this, we also like to note, for the Explosive Percolation models defined
in Euclidean space no such result is available and it is, therefore, still possible that
Explosive Percolation in the plane has a discontinuous transition. To sum up, we
find it proper to conclude, on the basis of our numerical study that the percolation
transition in our model behaves similar to the Achlioptas Process, i.e., though ap-
parently it exhibits the behavior alike to a discontinuous transition, it is indeed a
continuous transition.

Finally we measured the fractal dimension of the dust of pore spaces right at
the percolation threshold using the Eqn. (5.1). We considered a large sample of
uncorrelated disk patterns that have been grown at a rate δ. A periodic boundary
condition has been imposed along the x direction and the pattern is grown till a
global connection appears along the y axis when further growth is terminated. For
each pattern we estimated the following quantities: the distribution n(r, δ) of the
number of disks of radii r, its cumulative distribution N(r, δ), total perimeter P (r, δ)
and the remaining uncovered area A(r, δ). We plot all four quantities in Fig. 5.8
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Figure 5.9: (Color online) The picture of the contact network corresponding to the
disk pattern in Fig. 5.1(a). A link between a pair of disks that overlapped is drawn
by a straight line joining their centers. The pattern has many clusters. The sub-
graphs corresponding to the top four largest clusters are displayed by the same colors
as used in Fig. 5.1(a).

using a log− log scale for δ = 0.000125. For each curve the scaling appeared in the
intermediate regime of disk radii. Estimation of slopes of these curves in their scaling
regions and using Eqn. (5.1) we have obtained the values of the fractal dimensions
as 1.42, 1.41, 1.40 and 1.46 respectively. Clearly a large scatter of the estimated
value of df is present, yet this data indicates that the df is like to be around 1.42 a
with rather large error of around 0.10. A more accurate estimation needs patterns
to be generated using even smaller value of the growth rate δ.

5.4 Contact Network

A contact network for the assembly of overlapping disks may be defined identifying
the centers of the disks as nodes. In addition a link between a pair of nodes is
introduced if and only if their corresponding disks overlap [105]. As time passes the
contact network grows in the number of nodes as well as links. In Fig. 5.1(a) we
have exhibited the disk pattern at the percolation threshold where different disks are
of different radii. In general the large disks have overlaps with many other disks and
therefore in the contact network these nodes form the hubs of the network. In the
same way smaller disks have fewer links but their numbers are more. The contact
network corresponding to the Fig. 5.1(a) has been exhibited in Fig. 5.9. Since there
are many clusters, the network is not a singly connected graph. The four top large
clusters are represented by four sub-graphs of the network.

The degree kj of a node is the number of links meeting at node j. Here that
would be equal to the number of other kj disks that have overlap with the j-th
disk. Typically such networks are scale-free networks which have power law degree
distributions. Similarly we expect that for the contact network of the disk pattern,
the largest component of the graph, right at the percolation threshold has the degree
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Figure 5.10: (Color online) (a) The nodal degree distribution D(k, δ) of the contact
network of the pattern at the percolation threshold for three different values of
the growth rate δ = 0.0001 (blue), 0.00004 (red) and 0.00001 (black); the value
of δ decreases from the left to the right. Binned data have been used to reduce
fluctuation. (b) The finite size scaling analysis of the data in (a) where D(k, δ)/δ0.89

scales as kδ0.29 which gives γ = 3.07.

distribution D(k) ∼ k−γ, in the limit of δ → 0 where γ is the degree distribution
exponent to be estimated. For finite δ we have calculated the probability distribution
D(k, δ) which is the probability that a randomly selected node has degree k. In
Fig. 5.10(a) we plot D(k, δ) against k on a log− log scale for the three different
values of δ. Apart from the very small and large values of k the curves are quite
straight in the intermediate regimes indicating that the degree distributions indeed
have power law variations in the intermediate range of degree values. A direct
measurement of slopes gives the values of γ(δ) actually depend on δ and extrapolate
like γ(δ) = γ(0)− 5.8δ0.39 with the extrapolated value of γ(0) = 2.80. This analysis
is supported by a finite size scaling analysis of the same data. In Fig. 5.10(b) we
plot the same data used in Fig. 5.10(a) but scale both the axes with suitable powers
of δ. The best data collapse corresponds to

D(k, δ)/δη ∼ G(kδζ) (5.9)

where the values of η ≈ 0.89 and ζ ≈ 0.29 are obtained; G(x) being the universal
scaling function. This implies that from the scaling analysis the estimate for the
exponent γ in the limit of δ → 0 is γ = η/ζ ≈ 3.07. Averaging the two estimates,
we quote a value of γ = 2.94(14).

This estimated value of the degree distribution exponent close to 3, prompted
us to compare this contact network with the Barabási-Albert network [5]. When
a new disk is introduced, its center is selected randomly with uniform probability
anywhere within the uncovered region. For an already existing disk i of radius ri if
the center of the new disk is selected within the annular ring of radius (ri + δ) then
the new disk becomes its neighbor immediately after introduction. Therefore it is
more probable that a newly added disk becomes the neighbor of a larger disk than
a smaller one and its probability is proportional to ri. But this observation holds
only while the disk i is growing, i.e., till its degree ki = 0. The moment it gets its
first neighbor i.e., the first link, it’s growth stops and it becomes frozen. Thereafter
the degree ki of i increases but its radius does not, and gradually the annular space
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fills up. Therefore unlike the the ‘rich gets richer’ principle in the Barabási-Albert
network [5] here the attachment probability is not proportional to the degree k. We
studied how the average radius of all disks whose degrees are equal to k depends
on k. We have plotted (not shown here) for a small value of δ using the log - log
scale 〈r(k)〉/ log(k) vs. k on a log - log scale which fit very well to a straight line
indicating that the following form with logarithmic correction may be valid

〈r(k)〉 ∼ k0.72 log k (5.10)

for the growth of the average radius of a disk with the their degree k.

5.5 Conclusion

Signature of discontinuous jumps in the Order Parameter has been observed in a
continuous percolation transition of an assembly of growing circular disks which
overlap slightly before becoming frozen. Extrapolation of numerical results indicate
that in the limit of the extremely slow growth rate of δ → 0 the percolation tran-
sition occurs when the area coverage is unity, i.e., the disk pattern is space-filling
even at the percolation point. Surprisingly, within our numerical accuracy, it has
been observed that the percolation transition of such a system has a discontinu-
ous macroscopic jump in the Order Parameter and also associated with a vanishing
width of the transition window. On the contrary, the cluster size distribution has
been found to have a power law decaying functional form. We conclude that though
the transition in our model is actually continuous it exhibits certain features of a
discontinuous transition. We conclude that our model is yet another example like
the Achlioptas Process [90], the original model of Explosive Percolation, where a
similar sharp but continuous transition has been observed.
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Chapter 6

Weighted Network Analysis of
Earthquake Seismic Data

6.1 Introduction

Earthquake is probably one of the most important natural phenomenon affecting
human life and property, hence its study and quest of a preventive mechanism has a
long history. Different laws have been formulated from empirical observations e.g.,
the Gutenberg-Richter law [106] relates the frequency of tremors of a given magni-
tude and the Omori law [107] describes the temporal rate of decay of aftershocks
corresponding to a main shock. More recently Physicists have tried to explain the
earthquake dynamics as a scale invariant process. Correlation among different shocks
as well as the recurrence time distributions [108-111] have been studied. The spatial
positions of earthquake epicenters have been claimed to form fractal sets [112,113].
A number of models have been proposed and studied. For example, the well known
Burridge-Knopoff model describes the slow creeping of the continental plates along
the fault lines as a stick-slip process [114]. Very importantly Bak et al. suggested
that the phenomenon of earthquakes may be looked upon as a Self-Organized Crit-
ical process which spontaneously generates long range spatio-temporal correlations
or scale-invariance [34, 115]. However the actual mechanism of the underlying dy-
namics or efficient forecasting of this complex phenomenon have not been possible
yet.

Recently the time sequence of occurrence of different tremors and the positions
of their epicenters in different earthquake catalogs have been studied using the tools
of complex network theory. Baiesi and Paczuski considered different tremor events
as the nodes of a network where a pair of nodes are linked if the correlation between
them exceeds a certain threshold value [116, 117]. In another method, Abe and
Suzuki considered a link between every pair of successive tremor events [118-125].
Both groups suggested that the earthquake network has scale-free structures with
small-world properties. In addition, there are other studies which deal with corre-
lations, recurrence times and modeling of earthquakes [126-129].

To construct the earthquake network, Abe and Suzuki digitized the entire earth-
quake region into a rectangular grid, using the lattice constant as a tunable pa-
rameter [118]. Here, a cell is considered as a node if at least one tremor has its
epicenter within this cell. A pair of nodes is defined to be connected by a link if

75



76 CHAPTER 6. WEIGHTED NETWORK ANALYSIS ...

Region SC JU CAN
Period 1973 - 2011 1985 - 1998 1950 - 1992
θmin 32 25.73 0
θmax 37 47.964 87.75
φmin -122 126.43 -99.86
φmax -114 148.0 177.1
n 572601 200910 25970

(LlatLlon)
1/2 638.33 Km 2178.01 Km 14715.41 Km

Table 6.1: All angles are measured in degrees. SC: Southern California Earthquake
Data Center, http://www.data.scec.org/ JU: Japan University Network Earth-
quake Catalog, http://wwweic.eri.u-tokyo.ac.jp/db/junec/ CAN: Canada’s Na-
tional Earthquake Database, http://earthquake.usgs.gov/earthquakes/eqarchives/

and only if at least one pair of successive seismic events occur whose epicenters are
located within these two cells. It has been observed that the associated network is
hierarchical, it has the assortative property and it’s clustering co-efficient follows a
scaling relation with cell size as well as the size of the earthquake network. It is
to be noted that, in this network analysis of earthquakes, all links are treated on
identical footing irrespective of (i) the strengths of the tremors and (ii) the number
of successive pair of events that correspond to a particular link which implies that
the network introduced by Abe and Suzuki is an unweighted network.

On the other hand, a more detailed analysis reveals that roles played by different
links have different importance - which demands the introduction of a new variable
called ‘weight’ associated with a link. In many networks link weights represent the
strength of ties between nodes which are not similar and in fact quite often they
are highly heterogeneous. There are several well known examples. For example, the
passenger traffic between a pair of airports in airport networks [13,130], strength of
the pair-interaction between two species in ecological network [131], the volume of
trade between two countries in the international trade network [15,16] etc. A number
of new properties of these networks have come to light when they are analyzed
considering the link weights.

The method of Baiesi and Paczuski is crucially based on the work of Bak et
al. in [108]. However, careful examinations of [108] have revealed that their work
ambiguously contains several artificial assumptions regarding e.g., precision of time
separation for detecting events etc. Later, it has been found that the unified scaling
law in [108] for waiting times fails to hold for data sets other than the Californian
one [132]. This is the reason why one cannot see universal properties in networks
of the Baiesi-Paczuski type. On the other hand, the method of Abe and Suzuki is
certainly associated with a universal law [133].

In this chapter, we study the earthquake network as a weighted network to gain
better insights about the structural properties and correlations present in the net-
work [134]. In section 6.2, we define the weighted network and describe the quantities
observed. In section 6.3, we present the results and their analysis. In section 6.4,
we describe the rich-club analysis. The chapter is summarized in section 6.5.
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Figure 6.1: (Color online) (a) Plot of the link weight distributions P (w, ℓ) against
weight w using ℓ = 0.01. (b) Plot of the variation of the link weight distribution
exponent γw(ℓ) against ℓ. Colors used: SC (black), JU (red) and CAN (blue).

6.2 The Weighted Earthquake Network

Given the time sequence of occurrence of seismic events in a particular earthquake
catalog, the network is constructed following Abe and Suzuki in [118]. We define
the weight w associated with a specific link as the total number of successive events
between its two end nodes. It is observed that these weights are not similar at all,
in fact they vary over a wide range.

Three different earthquake catalogs have been analyzed, namely, the Southern
California Earthquake Data Center catalog (SC), Japan University Network Earth-
quake catalog (JU) and Canada’s National Earthquake Database catalog (CAN).
Different specifications of these catalogs are given in Table 1. Each catalog contains
the data for every seismic event within a specified period: geographical positions of
the epicenters described by their latitudes (θ) and longitudes (φ) and the precise
times of occurrence. During the period from 1932-1972 the number of events in the
SC data is very small compared to rest of the period. Therefore we have analyzed
the SC data for the period from 1973-2011 containing a total of 572601 events. The
Japan University catalog has the total of 200910 seismic events between 1985 and
1998; where as the Canadian catalog has the record of 25970 seismic events within
the interval between 1950 and 1992.

These epicenters are extended over a region which we refer as the ‘earthquake
region’. The earthquake region corresponding to a particular earthquake catalog is
characterized by the minimum and the maximum values of these coordinates, i.e.,
(θmin, θmax) and (φmin, φmax). Following the method in [118] the earthquake regions
have been digitized into different grids to analyze the data. The main difference is
we have used two dimensional cells on the surface of the earth and ignored the depth
coordinate of the epicenter where as Abe and Suzuki mainly used three dimensional
cells. To make the size L of the cells dimensionless we define the parameter ℓ =
L/(LlatLlon)

1/2 [124]. Here, Llat and Llon are the total extensions along the north-
south and the east-west directions respectively of the entire earthquake region. The
total number of data in the catalog is denoted by n. The North-South distance
between (θi, φi) and (θmin, φmin) is dNS = R(θi − θmin) and the East-West distance
is dEW = R(φi−φmin)cosθav, where the radius of the earth is R = 6370 Km and θav
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Figure 6.2: (Color online) (a) Plot of the nodal strength distributions P (s, ℓ) against
strength s using ℓ = 0.01. (b) Plot of the variation of the nodal strength distribution
exponent γs(ℓ) against ℓ. Colors used: SC (black), JU (red) and CAN (blue).

is (θmin + θmax)/2.
The weighted earthquake network is constructed in the following way. A cell is

considered to be a node if at least one tremor of any magnitude has its epicenter
located within the cell. Two successive tremors occurred at nodes i and j is referred
by a ‘bond’ between the two nodes. Self-loops, i.e., successive events occurring at the
same node, are not considered. Any number of successive events may occur between
the same pair of nodes which implies that a number of bonds may exist between the
nodes. If there is at least one bond between the nodes i and j, the nodes are said
to be linked. Therefore, the number of distinct links of this earthquake network is
much less than the total number of bonds. The weight wij of the i − j link is the
number of bonds between them. Strength of a node i is the total amount of weight
supported by the node: si = Σjwij, the sum runs over the ki neighbors of i. When
different link weights are uncorrelated, the average strength of a node of degree k
is s(k) ≃ 〈w〉k. On the other hand, in the presence of correlation s(k) ∝ kβ with
β > 1.

The clustering coefficient is a measure of the three point correlation among the
neighboring nodes. For many real-world networks, the clustering coefficient C(k),
for k-degree nodes, decreases as C(k) ∼ k−βk with βk ≈ 1. The weighted cluster-
ing coefficient [13] is defined as Cw(i) = (1/(si(ki − 1)))

∑

j,h((wij + wih)/2)aijaihajh
where aijs are the elements of the adjacency matrix. The nodal degree-degree cor-
relation is measured by the average degree of the neighbors of a node i is defined
as knn,i = Σjkj/ki where j runs over the ki neighbors of i [13]. For the nodes
of degree k, 〈knn(k)〉 = Σki=kknn,i/Nk = Σk1k1P (k1|k) where Nk is the number of
nodes having degree k. In absence of correlation, 〈knn(k)〉 is a constant. If 〈knn(k)〉
increases or decreases with k, the network is said to be assortative or disassorta-
tive respectively. For weighted networks one defines, kwnn,i = Σjwijkj/si and simi-
larly the 〈kwnn(k)〉. The heterogeneity in link weights is measured by the ‘disparity’
Y (i) =

∑

ki
[wij/si]

2 [19, 20]. When weights are of the same order Y (k) ∼ 1/k (for
k ≫ 1) and if few weights dominate then Y (k) ∼ 1 [21].
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Figure 6.3: (Color online) The average nodal strength 〈s(k, ℓ)〉 plotted against the
degree k for SC (black), JU (red) and CAN (blue) data for for ℓ = 0.01.

6.3 Results

In Fig. 6.1(a) we plotted the probability distribution P (w, ℓ) of link weights on
a double-logarithmic scale graph for the three countries for ℓ = 0.01. The data
for South California and Japan appear to be described by power laws of the form
P (w, ℓ) ∝ w−γw . Though the catalog of Canada is quite short, yet its distribution
may also be described by a power law. Slopes of the curve give the estimation of
the exponent γw = 2.38, 3.28 and 1.87 for SC, JU and CAN respectively. These
exponents γw(ℓ) have been measured by varying the cell size ℓ. In Fig. 6.1(b) we
have shown the variation of γw(ℓ) with ℓ. Evidently γw(ℓ) approaches a fixed value
as ℓ increases.

Similarly the probability distribution of nodal strengths P (s, ℓ) are plotted in
Fig. 6.2(a) for ℓ = 0.01. Again a power law decay function P (s, ℓ) ∼ s−γs have been
observed to fit well for all three earthquake regions. Slopes of the curve estimate
the value of the exponent γs = 1.40, 1.24 and 1.86 for SC, JU and CAN respectively.
In a similar way as before the variation of γs(ℓ) against ℓ have been shown in Fig.
6.2(b) which also saturate as ℓ increases.

In Fig. 6.3 the average strength of all k degree nodes 〈s(k, ℓ)〉 are plotted against
k for ℓ = 0.01. It has been observed that the average strength scales almost linearly
for all the three earthquake zones up to k ∼ 100 exhibiting almost no strength-degree
correlation. But beyond this regime the variation of 〈s(k, ℓ)〉 is no more linear and
in this regime the strength-degree exponent β > 1. β is found 1.53, 1.26 and 1.23 for
SC, JU and CAN respectively. It has also been observed that the value of β shows
increasing trend with the increasing box sizes. This signifies that weights associated
with links meeting at small degree nodes are uncorrelated where as those for large
degree nodes are correlated. Therefore the large degree nodes not only have large
number of links but the weight of their links are also large.

In Fig. 6.4 we plot unweighted and weighted average clustering coefficient of all
k degree nodes and plotted them with k. In Fig. 6.4(a) the nature of variation of
C(k, ℓ) with k shows a decaying tail for larger degree values for all three earthquake
regions implying a signature of hierarchical structure of the network as found by Abe
and Suzuki [120]. However in Fig. 6.4(b) the plot of weighted clustering coefficient
Cw(k, ℓ) this trend is almost neutralized showing no visible signature of hierarchy.
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Figure 6.4: (Color online) (a) Plot of the clustering coefficient C(k) for nodes with
degree k. (b) The weighted clustering coefficients Cw(k) against nodal degree k.
Colors used: SC (black), JU (red) and CAN (blue) for ℓ = 0.01.

This may be the reflection of the fact that though the neighbors of the large degree
nodes are not very densely connected but links connecting them are strong links
bearing large weights.

The average degree 〈knn(k, ℓ)〉 of an arbitrary neighbor of a node of degree k
has been plotted with k in Fig. 6.5(a) and its weighted counterpart 〈kwnn(k, ℓ)〉 has
been shown in Fig. 6.5(b). This quantity also represents the mixing pattern of
the nodes. Decay of 〈knn(k, ℓ)〉 with k at large degrees indicates that the mixing is
disassortative, that is large degree nodes have no general preference to connect with
large degree nodes. On the other hand the plot of 〈kwnn(k, ℓ)〉 in Fig. 6.5(b) displays
almost uniform variation instead of decay at large degrees signifying the absence of
degree-degree correlation. The same feature is prominent for all the three earthquake
regions. It may be noted that in [120] an assortative dependence of 〈knn(k, ℓ)〉 for
large values of degree k has been observed, which may be due to the fact that the
elementary grid cells used in this work are three dimensional in comparison to two
dimensional cells used by us.

In Fig. 6.6(a) the average disparity 〈kY (k, ℓ)〉 of link weights connected to a node
of degree k is plotted with k. It is evident from the plot that for small values of k,
〈kY (k, ℓ)〉 is in the order of unity showing almost no disparity. But in the regime
of k > 100 disparity does exist among the link weights and the 〈kY (k, ℓ)〉 grows
gradually with k. Since the earthquake network has been constructed using the
information of the time sequence of tremor events, this network may be considered
as a directed network as well. Here a bond is directed from i to j, if the corresponding
tremor in the cell j occurred after that in the cell i. This implies that a typical node
may have any number of inward as well as outward bonds. A weighted version of
this directed network may be defined by introducing the directed weight wi→j which
is the number of bonds that are directed from the node i to node j. Therefore,
the weighted in-degree, which measures the frequency of being a successor, may
be defined as kwi (in) = Σjwi←j and similarly for kwi (out) = Σjwi→j. A detailed
look however reveals, since the successive tremors have constructed the network,
every inward bond to a node must have an outward bond from that node, with
the exception of the first and last nodes of the tremor sequence. This implies that
for every node the weighted in-degree and out-degree are equal. Now, since the
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Figure 6.5: (Color online) (a) Plot of average neighbor degree 〈knn(k, ℓ)〉 and (b)
the weighted average neighbor degree 〈kwnn(k, ℓ)〉 with k. Colors used: SC (black),
JU (red) and CAN (blue) for ℓ = 0.01.

strength si of a node i is the sum of weights of all ki links meeting at i we have
kwi (in) = kwi (out) = si/2.

Another important measure of a directed network is known as the ‘reciprocity’.
In general, a number of links in a directed network is bi-directional and the rest
are uni-directional. The reciprocity r is the ratio of the number of bi-directional
links and the total number of links. In the context of the earthquake network, the
reciprocity r measures the probability if one node at the end of a directed link is an
epicenter of a tremor then what is the probability that the other end node would
also be the epicenter of another tremor. In the Fig. 6.6(b) we plot the variation of
r(ℓ) with the cell size ℓ. It is observed that r(ℓ) gradually grows with the cell size.
Increasing cell size is a kind of coarse-graining. Therefore, as the cell size increases,
a cell accommodates a larger number of epicenters. This implies that if a pair of
successive tremors occur in two different cells, another pair of successive tremors
would take place in the opposite direction within the same cells with an enhanced
probability.

6.4 The Rich-Club effect

Analysis of different real-world networks exhibits non-trivial correlations among the
nodes. An implication of such correlation is, for an unweighted network the large
degree nodes are connected among themselves forming a club. Such a club is defined
by a subset of nk nodes whose degree values are at least k. A rich-club coefficient
(RCC) is measured as ψ(k) = 2Ek/[nk(nk−1)] where Ek is the number of links that
actually exists in the club and [nk(nk − 1)]/2 is the number of maximum possible
links in the club [135]. A high value of ψ(k) implies that members are indeed tightly
connected. However gradually it has been realized that only this definition is not
sufficient, since with this measure even uncorrelated random graphs exhibit some
rich-club effect. It has been suggested that one needs to define a ‘null model’ or
the maximally random network (MRN) maintaining the nodal degree values {ki}
preserved, measure the corresponding RCC ψran(k) and observe the variation of
ratio ρran(k) = ψ(k)/ψran(k). One method to generate MRN is the pairwise link
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Figure 6.6: (Color online) (a) Average disparity 〈kY (k, ℓ)〉 of links connected to
a node of degree k has been plotted with degree k. (b) Reciprocity r(ℓ) has been
plotted against the cell size ℓ. For both figures SC (black), JU (red) and CAN (blue)
data for ℓ = 0.01.

end exchange method [135].
The concept of rich-club can be applied to weighted networks as well by slightly

modifying the definition. The rich-club in weighted network is defined as the subset
of nodes whose strengths are at least s. Therefore in our case the nodes of the
rich-club control a major portion of the world’s earthquake dynamics. The RCC of
the weighted network is modified as: Rw(s) = 2Σi,jwij/[ns(ns − 1)]. Consequently
the maximally random weighted network (MRWN) can be generated by preserving
both the nodal degrees {ki} as well as the nodal strengths. To generate the MRWN
a self-consistent iteration procedure is used to obtain the link weight distribution
consistent with the nodal strength list {si}. Initially arbitrary random values of the
weights wij are assigned to all links maintaining that the link weights are symmetric
i.e., wij = wji. For an arbitrary node i the difference δi = si − Σjwij is calculated.
Weights of all ki links meeting at the node i are then updated as wij → wij +
δi (wij/Σjwij), to balance si and Σjwij. By repeated iterations the link weights
quickly converge and attain consistency with nodal strengths {si}. It is checked
that 〈sisj〉 ∼ wij relation is well satisfied for this MRWN.

In Fig. 6.7(a) we show the variation of the ratios ρran(k, ℓ) for earthquake network
and MRN with k. Since ρran(k) ∼ 1 for all k, the unweighted network does not show
the presence of rich-club phenomenon with respect to MRN. In Fig 7(b) the ratios
ρran(s, ℓ) = Rw(s)/Rw

ran(s) of the weighted rich-club coefficient of the earthquake
network and MRWN plotted with s/smax for l = 0.01. where s and smax are the
strength and maximum strength of the nodes. Since ρran(s) > 1 for large s, we
identify a strong rich-club ordering in the weighted earthquake network.

6.5 Summary

We have analyzed the seismic data sets of three different earthquake regions using
the framework of the weighted networks. It has been observed that the link weights
assume highly heterogeneous values and the probability distributions of link weights
and nodal strengths follow power law decay forms. Un-weighted version of the
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Figure 6.7: (Color online) For the earthquake network, plot of the (a) ratio ρran(k, ℓ)
of unweighted rich-club coefficient ψ(k, ℓ) and the same ψran(k, ℓ) of MRN has been
plotted against the nodal degree k; (b) ratio ρran(s, ℓ) of weighted rich-club co-
efficient Rw(s, ℓ) and the same Rran

w (s, ℓ) of MRWN has been plotted against the
fractional nodal strength s/smax. Colors used: SC (black), JU (red) and CAN
(blue) for ℓ = 0.01.

network shows the hierarchical nature, disassortative mixing and absence of rich-
club phenomenon. On the other hand, the weighted version of the network exhibits
absence of disassortative mixing and strong rich-club ordering.
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